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Chapter 1

Introduction

1.1 Intelligent Robotics

For many years, humans have been trying to create an intelligent machine ca-

pable of performing tasks the same way or even better than humans. First

attempts can be found in the 18th century, where some mechanic devices in the

shape of humans or animals could perform certain tasks and movements. [32]

However, it is until the second half of the 20th century where we can find a

great development of “robotics” as a scientific domain and the emergence of the

firsts intelligent robots.

On one hand, robotics as a interdisciplinary branch of engineering, deals

with the design, construction, operation and application of robots. On the

other, artificial intelligence is a branch of computer science, whose main goal

can be described as the development of the computers ability to perform dif-

ferent task emulating the human intelligence. Combining robotics and artificial

intelligence create the possibility of having truly autonomous intelligent robots.

More specific, robotics can create a machine capable of navigate and manipu-

late our environment and artificial intelligence can provide the understanding

of environment.
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In the recent years, the advance in robotics has been accelerated. Many

robots have been created in different laboratories around the world, each one

with its advantages and disadvantages. However it is hard for these robots to

go from the laboratories to our homes. Since the laboratories environments

are very controlled, it is hard for the robots to adapt to uncontrolled human

environments. The few robots that are nowadays in our homes are programmed

to perform very specific tasks.

Nowadays, the vacuum cleaner robot “Roomba” is the major example

of a robot that has successfully enter to our homes (Figure 1.1(a)). But this

robot does not localize within the environment, it only react to what its prox-

imity sensors detect; moreover it can not interact with humans and much less

anticipate its movements. So, we are still pretty far from having a truly service

robot, like Rosie the robot from the Jetsons (Figure 1.1(b)).

(a) (b)

Figure 1.1: Example of service robots, in a) the vacuum robot Roomba and in

b) a fictional robot, Rosie from the cartoon “The Jetsons”, a great example of

a service robot.

The main reason why it is so difficult for robots to adapt to real human

environments, is because they are very dynamic. This situation requires that

robots perform several tasks at the same time, for example, localize himself,

avoid collisions, detect objects, interact with humans and maybe even anticipate

the humans movements. All of this tasks are basic to humans, but represent a

challenge for robots.
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Robots nowadays do not have a full understanding of human environ-

ments, which may seem a little contradictory since there are computers being

really good at playing chess or go, and there are even robots exploring Mars.

But, the fact is that the number of variables present in human environments

is very big. Humans can process them almost unconsciously, but for a robot,

that number of variables makes those tasks very challenging. This is known as

the Moravec’s paradox, which say “it is comparatively easy to make computers

exhibit adult level performance on intelligence tests or playing checkers, and

difficult or impossible to give them the skills of a one-year-old when it comes to

perception and mobility.”

For many research groups around the world, the tasks of robot’s local-

ization and navigation can be considered solved, however, only under certain

circumstances.

1.2 Context

Nowadays there are several algorithms and methods to solve different tasks

required by autonomous service robots. For example, there are algorithms that

a robot can use to navigate and localize itself in a given environment, although

these are not perfect, they provide very good results in most of the humans

environments. These algorithms are mostly based on laser or sonar sensors, and

most of them rely on the geometry of the environment.

There are other algorithms like path planning or the detection of certain

objects that improve human-robot interaction, however they are not enough if

we wish to have a robot as an assistant in our homes.

In order to improve current services provided and their quality, we must

incorporate new methods and algorithms to extract more useful information

about the environment. One of these tasks would be the detection of objects

present in the environment. However we believe that specially household furni-

ture will provide more information about the environment and then the robot

could reasoning about it.
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For a robot to detect all the pieces of furniture in a home or in an office

environment, is still an open problem. This one is actually been tackled by

many researchers and there are some results where they can detect some pieces

of furniture but there are always certain constraints. Most of this works detect

the furniture through cameras on-board the robot, analyzing either a 2D or 3D

images. These detection algorithms normally focus on the shape of the object,

on characteristics extracted at certain points or the object appearance.

We believe that it is important to identify household furniture in the 3D

space, and not only as obstacles, but as a part of the environment. Because,

if the robot knows what kind of furniture are present, this would give more

information to perform its tasks. For example, if the robot has some uncertainty

about where it is in the environment, the presence of a bed can suggest that the

robot is in a bedroom, or the presence of the couch says that it is in the living

room.

3D detection algorithms can be computationally very expensive, so when

the detection is performed by a robot it is very important to find a proper way

to represent the objects and to extract its characteristics. A good representation

will lead to a fast processing and a good classification.

RGB-D cameras have become popular in the later years, they are not

the most accurate however they are an inexpensive sensor to obtain 3D data.

The color information has also been used in object detection, but it is a char-

acteristic that can be easily affected by change in the light conditions. For that

reason and considering that some furniture can change their color over time (for

example when a bed changes its bedspread), it was decided not to use the color

information at this point for the detection of furniture.

1.3 Hypothesis and Objectives

This work examines the current approaches to furniture detection and propose

a variant for furniture a detection that works with noisy or incomplete data at

linear time.
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The main goal of this work is the detection of household furniture al-

lowing in the future to improve the understanding of the environment and the

quality of services provided.

A secondary goal will be the creation of an structure which permits to

determine the characteristics of horizontal planes, as robot requires to know

that is not the same an horizontal surface for a dinning table than the horizontal

plane of a bed

1.3.1 Hypothesis

It is possible to represent the furniture within a house-like environment as a

combination geometrical components and to use that representation to detect

the furniture on a scene.

1.3.2 General objective

Identify the furniture present at a home-like environment to provide useful in-

formation that a robot can use to solve effectively future tasks

1.3.3 Specific objectives

• To create or recover 3D models of common household furniture for com-

parison and evaluation.

• To develop algorithms to extract the geometrical components from furni-

ture in scenes.

• To determine measures of the geometrical components to characterize

them

• To create a graphical representation for every piece of furniture

• To propose similarity measures to compare the models graph and the scene

graph
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(a) (b)

Figure 1.2: Robots in a) The robot UVerto at the Artificial Intelligence Research

Center, Universidad Veracruzana, and in b) the robot Max, a PR2 robot at the

LAAS-CNRS.

1.4 Considerations

Our furniture detection will be focused on those types of furniture that can

be moved by a human (or a robot) being for do cleaning or to give another

aspect to the room. Given that fixed furniture like closets or bookcases can be

incorporated to the map of the environment while doing SLAM, these have not

being considered along this work. On other hand, it is important to detect the

furniture regularly; because it is not enough for the robot to memorize where

they are and then just assume they will remain there.

This furniture detection will require a learning phase where the robot

will learn a specific piece of furniture, the learning of a generic model for all the

possibilities of a type of furniture (for example all the variations for a chair) is

out of our scope.

Our propose uses and consider only an RGB-D camera, mounted on

the head of a robot. These types of cameras provide a 3D image and have

become very popular because of their low price, which make them available for

practicably any robotic platform. No other sensor will be used for the detection,

in order to avoid an increase of the amount of data to process.

The figure 1.2 shows two different robotic platforms on which this ap-
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proach was developed and tested.

The robot Uverto (Figure 1.2(a)) is a robot, assembled at the Research

Center for Artificial Intelligence at the Universidad Veracruzana. It is a two

wheeled differential robot, equipped with an RGB-D camera mounted over a

Pan/Tilt unit, a laser range finder and sonars.

Max, a PR2 robot (Fig 1.2(b)), belongs to the Laboratory for Analy-

sis and Architecture of Systems (Laboratoire d’Analyse et d’Architectures des

Systèmes, LAAS). The PR2 robot is a four wheeled omnidirectional robot, he

has two arms with grippers, lasers, sonars, two stereo camera and a Kinect

camera mounted on its head.

Both robots are working with ROS (Robot Operating System) which let

us to capture the point clouds from the RGB-D camera and also provides all the

transformations between the different reference frames from the robot. Having

this transformations allows to transform the point cloud from a reference frame

on the camera to one in the base of the robot or in the map, eliminating any

inclination the camera may have.

The Figure 1.3 shows some images from the two environments used for

experimentation. Both of them represent a house-like environment representing

a living room, a dinning room and a bedroom.

1.5 Proposal

Based on an analysis of the furniture it was determined that they can be repre-

sented as a combination of geometrical components and they all have one main

horizontal plane linked to their functionality. Therefore, finding these horizontal

planes on a scene, can help us to detect the furniture. The figure 1.4 highlights

the horizontal planes on a house-like environment.

We have analyze the common techniques for plane segmentation on 3D

images and we determinate that we needed a different approach to detect the

planes being more flexible with the mathematical model but more consistent

with the human perception of a plane surface. So, among our specific goals
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(a) Environment at the CIIA

(b) Environment at LAAS

Figure 1.3: Environments

(a) (b)

Figure 1.4: Horizontal planes present on the environments
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there was the creation of a new plane detection strategy.

One of the problems detected when a common technique for plane de-

tection was performed on a scene from our environment, was that a plane could

be detected across different objects. For example, if the plane from a table was

detected and its points extracted, not only it extracted the points from the table

surface, it also extracted some points from the walls that satisfy the same plane

equation.

A second problem was that some furniture like the couch or the bed have

slightly curved surfaces, for a human this is obviated, but not for the common

plane detectors. Often, this detector would find just small portions of the planes

or planes with some tilting that does not correspond to the full surface of the

furniture.

This problems were solved by using an approach based on the distribution

of the points. Analysing the distributions of the points our approach can find

the horizontal and vertical planes that conform the furniture.

Since the main goal for this work is the detection of different types of

furniture, we needed to have the furniture models, so the robot can learn their

characteristics and later compare them with the objects in the scenes.

Some of the most common 3D model formats were analysed and it was

decided to use a point cloud representation for the furniture models. These

models were created by us from multiple views of the pieces of furniture taken

with the robot’s camera.

Finally we propose to represent the pieces of furniture as a graph, where

the nodes correspond to the different geometrical components and its charac-

teristics and the edges represent the adjacency between them. The detection of

the pieces of furniture is based on a probabilistic approach, proposed to measure

the similarity of this graphs.

The next chapter will discuss the related work and explain how it relates

to our propose. Chapter 3 will give an overview to the data and algorithms

required for this approach. Chapter 4 and 5 will detail our proposal; the extrac-

tion and comparison of geometric component in Chapter 4 and the creation and

9



comparison of the graph representation on Chapter 5. Finally, the evaluations

are presented in Chapter 6 and the conclusions on Chapter 7.
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Chapter 2

Related Work

Nowadays there are many works for object detection, depending on the appli-

cation they can focus on a specific a set of objects or they can focus on a more

general approach and try to detect a variety of objects. Is very common that

these works are tested over object datasets (either working with 2D images [13]

or with point clouds [25]). Some of the most popular datasets have everyday

common objects like: balls, hats, some fruits and others, one example is the

dataset presented in [25]. But there are also some databases with specific types

of objects, for example, the one presented in [26]. Particularly the detection of

furniture is not as common, but there are some works that have attacked this

problem using different techniques.

This chapter will review some techniques used for object detection, first

it will cover feature points and planes in common objects, then there will be an

overview of some techniques for furniture detection and how these techniques

relate with furniture detection. Since it will be necessary for our approach to

built a model of the objects, this chapter will also explore different techniques

for model creation.
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(a) (b)

Figure 2.1: Example of a surface representation, in a) a polygonal surface mesh

with surface normals and in b) spin-images. Figure taken from [22]

2.1 Point features

Many works in robotics has been done over 3D features and characteristics of

them. Among the most popular features based on the object’s texture infor-

mation are Spin-image [23], SIFT [28] and SURF [6]. On the other hand, Fast

Point Feature Histogram (FPFH) [41] and Viewpoint Feature Histogram (VFH)

[43] are some geometry based shape descriptors.

The Spin-image is a shape descriptor used to match surfaces. On this

case, the surface of the object must be described as a mesh with 3D points and

surface normals. This is complemented with a descriptive image that encode

properties of the surface attached to each surface point (Figure 2.1). In [22],

the use of spin images results in an efficient multiple object recognition.

The Fast Point Feature Histograms (FPFH) is a multi-dimensional fea-

ture that captures local geometry information between the angles of a point and

its neighbors. This feature is an improvement (in terms of computational time)

of other feature histograms descriptors used for geometrical surface descriptions.

In [41] this feature was proved successful to register point clouds. In figure 2.2

two examples are shown. In figure 2.2(a) the result after the registration of two

partial views of a bunny model from the Stanford 3D Scanning Repository [26]

is shown. In figure 2.2(b) a result is shown from a registration of a large point

cloud from a real-world outdoor scene.

12



(a)

(b)

Figure 2.2: Example of results of using FPFH for registration. In 2.2(a), two

partial views of the bunny model and the result obtained. In 2.2(b), on the left,

two overlapping point clouds (red and green) and on the right the alignment

result; the blue points correspond to persistent FPFH points. Figures taken

from [41]
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This feature and some others were tested on some common datasets in

[2]. The comparison is made between features for point clouds available in the

PCL library (this is a library that contains several algorithms for point clouds, a

more detailed explanation will be given in the next chapter). It was concluded

that features should be extracted only on a set of keypoints, since they can

be computationally very expensive. A large number of keypoints improve the

recognition results but increases the computational time.

In order to compare the different features, a subset of 3D point clouds

from the dataset in [25] were used. This dataset contains 51 different objects

categories, however for these comparisons only 10 of them were selected.

Choi et al. in [11] propose a pose estimation algorithm for grasping

objects, that includes the boundary of the objects and the depth discontinuities.

They also state a common problem for point features performances; the majority

of these approaches, are tested on objects with sufficient curvature changes, but

when they are faced with other type of objects, (for example industrial and

home objects which are mostly planar) they are not discriminative enough.

Point Features is not the only option. Other works have proposed alter-

natives. For example Bo et al. in [9] proposed a set of kernel features. These

features, based on depth images, capture different aspects of the objects like size,

shape and depth edges. This features proved to be useful for object recognition.

Another alternative to point features is pair point features. One of the

most popular works on point pair feature is the one presented in [14] by Drost

et al. This algorithm is used for matching 3D model with 3D point cloud scenes.

They propose the creation of a global model descriptor based on oriented point

pair features. This model consists of all model point pair features, which will be

stored on a hash table, representing a mapping from the point pair feature space

to the model, where similar features on the model are grouped together. At the

recognition stage, for each feature the hash table is queried and a fast voting,

similar to the generalized Hough Transform, is performed to determinate the

match.

Some improvements over the algorithm from Drost have been proposed.

One on them is presented in [8], where they mention some drawbacks like a

14



(a) (b)

Figure 2.3: Recognition results from the methods presented in [14]. In 2.3(a)

a scene from a dataset and in 2.3(b) the results, where it can be observed all

objects were found. Figures taken from [14]

relatively high dimensionality of the search space, and sensibility to outliers

and low density scenarios. In this article is proposed an improve by performing

a previous segmentation of the objects and a weighted voting scheme.

The combination of different types of information can be useful to de-

tect objects that can be difficult to detect using texture based features. For

example, in [48] color information is combined with shape information in order

to recognize objects. Another example of combining color information can be

found in [3] where they characterize points from a point cloud based on color,

its 3D position and normals. Color information can be interpreted as a prob-

abilistic image used for object detection as in [20] or it can be combined with

different sensors as in [30] where they fusion 3D depth data with color and also

temperature information from a thermal camera. In [38] color information is

used to create a superpixel segmentation (with the algorithm presented in [1])

and characterize them along with geometric features. However color can be a

not very reliable feature. In [10], advantages and disadvantages of different color

spaces are presented.

In [44] is presented a new 3D SLAM paradigm which instead of working

15



(a) (b)

(c)

Figure 2.4: An example of a mapped scene with slam++. In 2.4(a) a view from

the scene, in 2.4(b) the rendered objects and in 2.4(c) the mapped scene at the

object level. Figures taken from [44]

with low-level primitives (like points or lines), they work “object oriented”.

Even when the work from [14] was presented for free form objects, this work

uses those point pair features for the detection of furniture, probing to be very

successful when objects occupy most of the camera’s field of view, but poor

for distant objects or partly occluded. On this paper, is performed a dense

surface reconstruction, taking advantage of repeated known objects for compress

representation, in this case a chair and a table. An example of a mapped scene

with this approach is shown in figure 2.4.

2.2 Planes extraction

Our robot is expected to work within a home-like environment which, as many

other human-made environment consist mainly of planes. As stated in [45] “it

is a reasonable step to represent the surrounding 3D scene by a collection of

planar patches extracted from the 3D point cloud”.
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(a) (b)

Figure 2.5: Example of plane segmentation, in 2.5(a) a rgb image corresponding

to the input point cloud and in 2.5(b) the segmented planes. Figures taken from

[21]

In [45] are mentioned three main algorithms for plane extraction on 3D

which are, Expectation Maximization (EM), Region Growing (RG), and RAN-

dom SAmple Consensus (RANSAC), perhaps being RANSAC the most popular

approach. However this algorithms do not perform well on all circumstances,

they perform well on convex scenes but may fail in cluttered or noisy scenes

[45].

The FPFH is used to identify planes and other basic surfaces types in

[5], giving good results in particular in close-up with low noise.

One alternative for plane detection was presented in [21] where they seg-

ment planes in household environments using an RGB-D camera. In figure 2.5

is shown the result for segmenting points on the point cloud with similar surface

normal. They are also able to detect obstacles, graspable objects and they can

segment and classify all the planes in the scene. Using local surface normals

they cluster all the points with a similar normal and then they merge similar

planes. Taking advantage of the organized structure of the point clouds allows

them to detect obstacles and segment the objects and to correct measurement

errors and to reconstruct the original geometry in far ranges.

In [46] another approach for plane segmentation is presented. They em-

phasize the importance of planar surfaces as landmarks and present a plane

extraction for SLAM based on an iterative implementation of RANSAC. They

combine information from a 2D laser scan and 3D information from an RGB-D

17



(a)

(b)

Figure 2.6: Results from the plane segmentation from [4], in 2.6(a) the input

point cloud of an indoor scene and in 2.6(b) the segmented planes. Figures

taken from [4]

camera.

For An et al. [4] is essential to describe the environment concisely with

geometric features, particularly planes, to optimize the processing of the 3D

data. They present an incremental plane extraction based on line segments

with data from a laser scanner. An example of their results are shown in figure

2.6.

This work presents the importance of geometrical components have to

describe the environment in which the robot is present.

2.3 Furniture detection

Using semantic information, robots can improve some of their tasks, specially

those involving reasoning about the environment or the object within. For

this reason some works have incorporated semantic maps either based on coarse

features [35] or based on objects [31]. The work in [17] enable the robot to reason

18



(a) (b) (c)

Figure 2.7: Explample of the segmentation presented in [38]. In 2.7(a) an rgb

image, in 2.7(b) and 2.7(c) the results for the segmentation of the table and the

chair respectively. Figures taken from [38]

with the spatial and semantic information, including the type of rooms and the

objects present in them however a furniture detection was not performed. Other

works focus on small objects and not pieces of furniture to build their semantic

representation of the scene. In [27] the furniture is considered as obstacles in

the environment and in [31] they are considered as large horizontal planes where

they can find objects. In [24] some pieces of furniture are incorporated (they

are detected using Iterative Closest Point) but two cameras are required, the

robot’s and another located on the environment.

According to Varvaoukas et al. in [47], “robots need to acquire capa-

bilities for recognizing and estimating different pieces of furniture and different

types of rooms, so that they achieve fluid collaboration and communication with

humans”.

The work in [38] presents a segmentation and recognition in RGB-D

images. By exploiting the depth channel they perform a binary segmentation

of the object from the background. A result is shown on figure 2.7. Another

segmentation of furniture is presented in [20] using the color information as a

probability value.

Other works perform furniture detection on point clouds, exploiting the

full 3D information available.

In [47] is presented a system for room and furniture recognition com-

bining information from self-captured models and internet-derived models. The
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recognition is based on some features calculated on binary images from different

views of the objects.

In [49], Wu et al. represent a geometric 3D shape as a probability dis-

tribution of binary variables on a 3D voxel grid, using a Convolutional Deep

Belief Network. The shape representation they propose can be used for object

recognition and for shape completion. They construct their own database in-

cluding some pieces of furniture like chairs, couch and tables. They depend on

large-scale 3D CAD models for the construction of the database.

Qi et al. [37] present a 3D object classification on data obtained from

CAD model, on different types of objects including pieces of furniture. Based

on previous approaches where they detect the furniture using 3D shape models

and Convolutional Neural Networks (CNNs) they determinate that the existing

3D CNN approaches are unable to fully exploit the 3D representations.

2.4 Furniture and planes

Using plane segmentation to detect furniture, Rusu et al. in [42], create se-

mantic 3D object maps for a kitchen environment. They create an hybrid map

comprised of two parts, one is a triangulated surface map (mainly used for nav-

igation and manipulation tasks) and the other part is a static semantic map

which contain the objects in the scene and also the walls, floor and ceiling. Fig-

ure 2.8 shows an example of the surface reconstruction. The semantic maps used

in this work an expanded in [36] by integrating information about appearance

and articulation of the objects.

The objects they incorporate to the map are mainly pieces of furniture

from a kitchen environment, they select furniture that have certain functionality

and that are fixed to the environment like cupboards, tables and shelves. To

detect these objects instead of learning a single global model, they use geomet-

rical techniques to split the scene and extract horizontal and vertical planes.

These planes are later classified to identify the pieces of furniture, by processing

separately, they claim they simplify the features needed and in general improve

the classification.
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Figure 2.8: Surface reconstruction with the furniture candidates. Figure taken

from [42]

The plane segmentation is archived with a hierarchical scheme with mul-

tiple level of detail. The point cloud is decomposed in an octree scheme and

planar areas are searched with a RANSAC variant. When a plane is detected

at any level, its equation is refined with points from a higher octree level.

Another work for furniture detection based on planes is present by Wun-

stel and Moratz in [50]. This approach uses a laser range to detect pieces of

furniture within an office environment (chairs and tables). Based on the ge-

ometry of the objects they segment the object in three different layers, all the

components and their relation between them are stored in a graph. An example

of the results obtained is shown in figure 2.9

The importance of the furniture’s planar surface is also exploited in [29]

where a topological map of a house-like environment is created highlighting the

furniture’s planes as areas of interest.

Gunther et al. [18] presents a semantic mapping technique of an indoor

environment, using RGB-D images. The furniture models are represented as a

semantic model in an OWL-DL ontology. They propose a three step method;

first, a triangle mesh is created from a point cloud, second they perform a

planar region classification and then the furniture detection, and finally they

adjust the furniture pose using ICP [7]. Their result is a mesh representation of

the environment enriched by CAD objects models corresponding to the detected
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(a) (b)

Figure 2.9: Object detection on an office environment. In 2.9(a) an rgb image

of the scene and in 2.9(b) the rendered range data with the detected furniture

colored. Figures taken from [50]

pieces of furniture. In average, it took around 9 seconds for them to process a

single point cloud.

2.5 Models creation

As it has been mentioned, it is important to have models of furniture from

which extract their components and to compare the data viewed on the scene.

Because we can not be sure to find the models for our furniture onlilne ans since

the most popular models may not be fit for our approach, it is necessary to

create our own models.

Ruhnke et al. [39] present an algorithm to create 3D model of furniture

from point clouds with partial views of the objects. They use an iterative

matching procedure based on interest points extracted with a Harris corners

detector over range images created from the point clouds. This approach allow

them to recursively merge partial point clouds representing partial views of the

objects even if the images come from different environments. They highlight

the importance for the robot to work with partial views because in most of the

applications the full 3D map of the environment with its objects completely

visible is not available.
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An online system for large and fine scale volumetric reconstruction is

presented in [34]. They use a simple spatial hashing scheme that allow them real-

time access and updates. Even when they operations are designed to be efficient

for parallel graphics hardware, they can be computationally very expensive for

a robot.

In [33] is presented an approach for a robot to learn models from the

Web. They state that extracting this information from the internet would help

the robots to learn and recognize similar objects in new environments. However

at this point, labelled 3D data is still not very popular in the web and not all

the model from all the varieties of furniture are available online.

Having analysed the works summarized in this chapter, it can be observed

the need to extract some features in order to improve the detection of objects on

a 3D space (specially for larger objects like furniture) and also the importance

of some geometrical entities like planes to represent the environment or some

parts of the objects.
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Chapter 3

3D Data for Robotics

The recent incorporation of cheap 3D sensors to the robots have lead to the

creation of new algorithms and libraries dedicated to process this information

efficiently. In this chapter it will given a brief introduction to some of these

algorithms as well as the software used in our approach.

3.1 ROS

The Robot Operating System (ROS) is an open source flexible framework for

writing robot software [16]. It is not an operating system in the traditional sense,

rather it provides a communications layer with the host operating system.

It started in 2007, mainly supported by the start-up Willow Garage, and

nowadays is a widely used platform in the robotics research community. From

the beginning, ROS has been developed by many researchers around the world

(and for multiple robotics platforms) encouraging always the development of

collaborative robotics software. In this way, every research team can contribute

to the tasks that are their speciality, and everyone can build upon each other’s

work.

One of the main concepts in ROS are the “nodes”. A node is a process
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that executes a certain task. Normally, many nodes are running simultaneously.

The communication between these nodes is performed by “messages”. The mes-

sages in ROS are a strictly typed data structure that can support the standard

primitive types as integer, floats, arrays, etc., they can even be composed of

other messages or array of messages.

For a node to communicate something, a message must be created and

then publish it to a specific “topic”. For a node to receive a message, it must

be subscribed to the corresponding topic. A node can publish to one or more

topics, and can be subscribed to one or more topics. A topic can receive and

broadcast messages for many nodes.

ROS also provides libraries and tools for common robot tasks, for exam-

ple mapping, localization and navigation, only to name a few.

As it was previously mentioned, there are several nodes in ROS, created

by different research teams. A few of the most common nodes used by any

mobile platform will be described next.

The node slam gmapping creates a 2D occupancy grid map. To use

this node is necessary a robot equipped with a laser range-finder mounted hor-

izontally and it also requires the odometry information of the robot. To create

the map this node uses an efficient Rao-Blackwellized particle filter [15], where

they take into account the most recent observation and the movement of the

robot to reduce the uncertainty.

In order to localize a robot, ROS provides a node call amcl. This is a

2D probabilistic localization system. It is based on the Monte Carlo localization

approach [12]. The node calculates the robot’s pose estimations based on the

data from a laser, a laser-based map (like the one obtained with gmapping) and

the robot’s transformations.

There is a library in ROS called tf (transformation), that it is very

helpful, because thanks to it, it is possible to keep track of the reference frame

of every moving part of the robot and recover transformations between all them.

It is its job to maintain the information for every joint in the robot, and update

them (capable of doing it at rates of hundreds of Hertz). This library contains
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some nodes to automatically update and broadcast the transformations to the

system.

3.2 3D data and PCL

3D sensors have been around for some years, but it was until the launch of the

Microsoft Kinect that its popularity increased. The low price of the Kinect,

compared to other 3D sensors, made it possible for many robots to be equipped

with a 3D sensor.

Along with this popularity and a bigger demand for techniques to process

3D sensing, it was created the Point Cloud Library (PCL). This library can work

with multi-dimensional point clouds and the 3D geometry processing. It also

contains state of the art algorithms, operating on point cloud data, for many

tasks, such as: filtering, registration, model fitting, segmentation and others.

A point cloud is a data structure that represent a set of multi-dimensional

points. Normally the points are in a 3D coordinate system defined by the

triplet (X,Y, Z). Point clouds can be obtained from different sensors like stereo

cameras, 3D scanners and RGB-D cameras.

PCL uses its own format for point clouds. The Point Cloud Data (PCD)

file format is not the only or the first format for point clouds, but it tries to

complement, other existing files. The point cloud stored at PCD files can be of

different dimensions, for example, if the points have only (XY Z) data, it would

stored in three dimension, but it the points also have color they would be four

dimensions, or if the points also have the surface normal components, it would

be six dimension (X,Y, Z,R,G,B, normalX, normalY, normalZ).

Another characteristic for the PCD is the way the points are stored.

The PCD format contemplates the width and height of the point cloud. If the

point cloud has a width and a height different of one, the cloud is considered

organized. But, if the total number of points of a point cloud is specified on the

width and has a height of one, it is considered as an unorganized point cloud.

This means that the points in an organized cloud are stored in a structure very
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similar to a 2D image, where the data is split in rows and columns. This gives

an important advantage because it simplifies the search of a point’s neighbors,

resulting on a more efficient computation.

3.3 Ransac Algorithm

RANSAC (Random Sample Consensus), is an iterative method for estimating

a mathematical model from a data set. This method is capable of detecting

outliers in the data set and to estimate a desired model without using them.

The algorithm works, by selecting a subset of the data set, adjusting a

model with them and then testing this model to determinate the number of

outliers. This process is repeated until some ending criteria is met, for example

a small number of outliers, or the number of iterations.

Ransac has become a popular algorithm to detect planes on a point cloud.

This algorithm has been implemented on PCL (along with variations of it) and

it can be used to adjust a point cloud to different types of models for example:

planes, circles, sphere, cylinders, cones, etc.

3.3.1 Common problems with Ransac

After some tests of the Ransac algorithm (from PCL) in our environment, a few

problems were detected.

First, the computational time. If the algorithm runs on a full point

cloud, normally it will the very slow. To get a faster computation it is needed

to perform a downsampling to the point cloud.

Second, the segmentation of the planes. Ransac will return all the points

that fit the selected model, even if they belong to different objects. For example,

when Ransac detects the horizontal plane of a table, it will also return the points

from the walls that are at the same heigh and which fit the model, but without

being on the corresponding plane or structure.
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(a) (b) (c)

Figure 3.1: In a), b) and c) point clouds from different points of view for the

couch

Another example is the segmentation of slightly curved surfaces that can

be consider as planes. For example the couch, its seat has certain curvature, so

the detected plane could have a considerable inclination. For our approach it

will be preferable to have a segmentation closer to the human perception of the

plane, which dismisses the inclination.

3.4 Model construction

As, our goal is to detect pieces of furniture on an indoor scene, we need to have a

model of the furniture we wish to detect in order to compare the objects present

on the scene. Nowadays there are many repositories online for 3D models with

many different formats, however, on one hand, we can not be sure to find all

the models we need and on the other, these models contain surfaces not visible

for our robot, therefore we have decided to create our own models.

Our model is constructed from several partial-views images taken with

the robot’s camera. For the acquisition the robot moved around each piece of

furniture saving the corresponding 3D images. An example of this partial views

of a couch are show on Fig 3.1. Since the robot was localized in the environment

reference frame, all the PCD’s where transformed to the world reference frame.

Before combining the 3D images, the object was segmented with a clus-

tering algorithm, that eliminates the floor, walls or other objects present on the

images.
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(a) (b)

(c) (d)

Figure 3.2: Examples of the PCD model created for the furniture, in a) the bed,

in b) the table, in c) the chair and in d) the couch

The next step was joining all the images in one single point cloud. There

are algorithms like ICP (iterative closest point) used to register a pair o a series

of images. Since the images were transformed to the same reference frame, we

get a good approximation but we use ICP to refine the transformations and

obtain a better result.

3.4.1 ICP algorithm

The main idea for the ICP algorithm is to find the correct transformation be-

tween a set of points, the source, to another set, the target. This is a very

popular algorithm for register 3D point clouds. [40]

The process starts with an initial guess of the transformation, where a

correspondence between points in the source and the target is established. If

the correspondences are correct, the correct transformation will be generated. If
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not, the algorithm iterates to refine this transformation by repeatedly generating

new pairs of corresponding points. If the two set of points are close to each other,

the algorithm will converge.

Diverse improvements have been proposed where they change the selec-

tion or the matching or the points, to the way the transformation is adjusted,

etc.
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Chapter 4

Geometric Components

Common household furniture is composed of various parts, most of them could

be associated to a geometric component, i.e. the legs of a table or the horizontal

surface from the seat of a chair.

Planar surfaces are very common in our house environments, an extrac-

tion of this planes can create a good representation. This chapter details an

approach for some geometrical components extraction based on histograms of

3D points, particularly horizontal and vertical planes.

We begin with a revision of some techniques used and then our approach

will be described.

4.1 3D Points Histograms

Histograms are a powerful tool to analyze the distribution of numerical data.

Since in this case, we will be working with point clouds, the histograms will be

used to analyze the distribution for points over a 3D space. More specifically,

we are interested in points that belong to a piece the furniture.

In order to analyze a given point cloud, it is important to be sure that
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the point cloud is aligned with reference to a specific reference frame. In other

words, motions from robot’s head and therefore of the camera in it, should be

corrected; particularly this means that any tilting in the camera position has to

be corrected.

We propose to make a histogram of heights, because it allow us to extract

information about the distribution of the points. For each horizontal plane there

should be a peak on the histogram.

4.1.1 Peak Detection

A naive approach to detect the peaks over histograms, can be selecting the

higher point and then selecting, both sides, descendant values until a minimum

is reached. However this approach is very sensitive to noise and adjacent small

peaks.

To reduce the noise and have a better peak segmentation detection, the

histogram curve is simplified with the Douglas-Peucker algorithm. Once the

curve have been simplified, the higher points are selected as well as both neigh-

bours, the right and left, corresponding to the inferior boundaries for the peak.

In the next the Douglas-Peucker algorithm used will be described.

4.1.2 Douglas-Peucker algorithm

This algorithm, also known as the Ramer-Douglas-Peucker algorithm (RDP),

is a curve simplification algorithm, which takes a polygonized curve with n

vertices and outputs an approximation curve with m vertices, where m < n.

This is one of the most popular curve simplification algorithm, commonly used

on cartography and computer vision. It was proposed in the early seventies and

since then a several improvements and implementations have been proposed.

The algorithm takes a list of points and an error threshold. The process

starts with an straight line between the initial and final point. Then, a search

is performed over the list of points to find the farthest point from this line. If

the distance from this point to the line is inferior to the error threshold, the
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Figure 4.1: Example of Douglas-Peucker algorithm

line is accepted as a good approximation; otherwise, the algorithm is applied

recursively to both segments generated: the first one between the initial and

the farthest point and the second, between the farthest and the final point.

The figure in 4.1.2 shows an example of the results from the algorithm.

The Figure 4.1(a) shows the initial polyline, from Figure 4.1(b) to 4.1(e) show

the evaluation of the points, and the Figure 4.1(f) shows the simplified polyline.

According to [19], the algorithm is not optimal, but generally produces

high quality approximations compared to other heuristic algorithms.

We have used this algorithm to recover the limits of the peak over the

3D points height histogram.
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(a) (b) (c)

Figure 4.2: Example of a height histogram

4.2 Histograms from furniture

As it was mentioned before, histograms will be used to extract and analyze

the geometric components of each piece of furniture. The figure 4.2 shows an

example of a 3D points height histogram from an indoor scene. The figures

4.2(a) and 4.2(b) show the RGB image and the point cloud respectively and the

figure 4.2(c) shows the corresponding 3D point heigh histogram.

As expected, it can be observed that the horizontal plane from the dining

table generates one peak, and those from the seats of the chairs generate another.

The resolution or size of the bins to create the histograms is an important

parameter. This size should be big enough to eliminate small variations on the

curve but not too big as it to eliminate the relevant characteristics of each curve.

The figure 4.3 shows an example the previous histogram with three different bin

sizes. Looking back at the scene in figure 4.2, if the bin size was selected too

small then the peaks on the histogram from the seats of the chairs, could not

be adapted to small variations on the cushions of the chairs. And if the bin size

were too big then the peaks will also contain points from the legs and the back

of the chairs, making a posterior filtering needed.

Different views of an object can produce different histograms, because

not all the surfaces are always visible.

So, if the histograms will be used to characterize a given piece of fur-

niture, it is important to create an histogram that captures all the furniture

characteristics. The figure 4.4 shows the histograms from different views (in
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Figure 4.3: Histograms with a different bin size. It can be observed that a

bigger bin size reduces small peaks in the curves, but it also incorpotate more

points to the bigger peaks

color blue) from a chest of drawers. It can be observed how the partial views

are similar between them; therefore the mean of the different views can be

consider a good approximation for the piece of furniture.

The figure 4.5 shows the histograms of six different pieces of furniture, it

can be observed how all of them present a different curve.

All the furniture’s histograms present an outstanding peak which corre-

spond to the horizontal planes of the furniture.

The detection and extraction of these peaks can be helpful to detect the

horizontal planes on a scene with multiple pieces of furniture. In the following,

it will be explained how this is achieved.

4.3 Plane Detection based on histograms

For detecting planes, instead of using a common technique like Random Sample

Consensus (RANSAC), we have decided to use a different technique based on

histograms. This approach works for detecting horizontal planes and can be

extended to detect also vertical planes and allows us a faster plane detection with
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Figure 4.4: Histograms from different views and their mean of a chest of drawers

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Height histograms for different pieces of furniture. In a) the bed, in

b) the table, in c) the chest of drawers, in d) the center table, in e) the chair

and in f) the couch
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(a) (b)

Figure 4.6: Example of a height histogram

a complete point cloud and the resulting planes could have certain curvature

which adapts better to certain furniture surfaces.

4.3.1 Horizontal Planes

For a given point cloud from a scene, the first step to detect the horizontal

planes is the construction of the 3D points height histogram.

We must remember that, the point cloud is transformed to the robot’s

base reference frame, so horizontal planes will concentrate a considerable amount

of points at the same heigh and create a peak at the histogram.

When the height histogram is constructed, each bin stores its correspond-

ing points, so when the peaks from the histogram are extracted, it is easy to

recover the corresponding points.

The figure 4.6 shows an example of a point cloud from a scene and its

corresponding height histogram. It can be observed there are three couches and

a center table in the scene. In this case the seat of the couches and the surface

of the table are practically, at the same heigh, so there is only one outstanding

peak in the histogram.

The extracted points correspond to a horizontal plane, however in some

cases (like this one) one peak can contain more than one plane. In order to

detect and separate these cases, all the points from a peak are projected to the
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Figure 4.7: Projection to the points extracted

floor plane and an image is created from this projection. In the same way, as

the histogram bins stores the corresponding 3D points in them, each pixel from

this image projection also stores its corresponding points. Then, this image is

analyzed in order to separate the different horizontal planes by doing contour

extraction and clustering.

The figure 4.7 shows the projection image from this example, it can be

observed the projections from the four different pieces of furniture in the scene

and also a line from the wall’s point that have the same hight. In order to

eliminate this kind of projections and other coming from that can be generated

by noise on the point cloud, the contours with a small area are eliminated. The

points are extracted from the remaining contours and each one is returned as a

horizontal plane found on the scene.

Since, this is a relax approach for plane detection, it allow us to identify

as “planes” certain surfaces with a small curvature like the seat of a couch or

an irregular surface like a bed.

Another advantage of this approach is that when it fit the plane equation,

it does not add points that belong to another object, like the points from the

wall in the previous example.

The next subsection explains how this approach can be adapted to extract

other types of components.
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(a) (b)

Figure 4.8: Example of a 2D histogram

4.3.2 Vertical Planes

For detecting the vertical planes, we follow a similar approach that the one for

detecting the horizontal planes, based on histograms. This time we create a

2D histogram where the point cloud will be projected to the floor plane, so

the vertical planes will generate a high concentration on the same coordinates

forming a line. The extraction of these lines will extract the vertical planes.

A grayscale image will be created based on this projection, where the

higher amount of points in one coordinate will correspond to white and where

there are no points correspond to black. This image will be pre-processed in

order to highlight the lines before extract them. The figure 4.8 shows an example

of a point cloud from an scene and its 2D histogram.

First the projection image is thresholded to eliminate the small values

and then morphological filters are applied to smooth the lines. Since the lines are

not always completely straight and with a variable width, a common algorithm

to detect lines, like the Hough algorithm, is not appropriate for this case.

A clustering algorithm was used to detect the lines. the resulting clusters

are approximated to polygons so we can simplify them and reduce the its number

of points. Then a convex hull is calculated to determinate if the cluster is one

single line (for example a wall) or if it is composed by two o more lines together,

for example two walls in a corner or a piece of furniture placed against the wall.

If the cluster is not a single line, then the intersection points are localized
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(a) (b)

Figure 4.9: Example for vertical planes detected

in order to separate the lines. Once all the lines are separated, the points from

each coordinate from the cluster are retrieve. The figure 4.9 shows the contours

found on the image and the vertical planes extracted form them.

4.4 Comparison of the detection of planes

How this approach for detecting horizontal and vertical planes based on the

analysis of the distribution of the points compares to the traditional algorithms

for plane detection? First, this approach only detects horizontal and vertical

planes, it can not detect inclined planes. Since the main goal is the detection

of furniture, where horizontal and vertical planes are predominant, this is not

consider a drawback for this approach.

The planes detected by this approach are closer to the human perception

of a plane, compared to the planes from a RANSAC algorithm. For example,

if a RANSAC algorithm is executed for detecting planes on a PCD scene from

a dinning room, when the horizontal plane from the table is extracted it will

also extract some points from the walls that mathematically satisfy the plane

equation, It is preferable to extract only the points from the table.

Finally the time of execution, for the RANSAC algorithm it can increase

significantly depending on the complexity of the scene while for this approach it

is almost stable, depending only on the size of the PCD. For most of the cases,

this approach is faster than a RANSAC algorithm when they are computed
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Full PCD Downsampled

PCD # points # planes t(ms) # points # planes t(ms)

1s02 307200 6 212 529 56985 3 70.8411

1s08 307200 9 443 996 91907 5 188.536

1s22 307200 13 924 436 77495 8 307.6721

1s25 307200 16 996 850 98226 6 176.7132

1s32 307200 8 539 632 96164 5 126.41

1s36 307200 10 755 982 75436 5 149.2531

1s41 307200 15 745 595 78399 6 195.037

Table 4.1: Table for RANSAC algorithm plane detection

Full PCD Downsampled

PCD # points # H # V t(ms) # points # H # V t(ms)

1s02 307200 1 3 350.607 56985 1 2 200.866

1s08 307200 1 3 273.514 91907 1 4 223.605

1s22 307200 3 8 383.694 77495 3 8 328.837

1s25 307200 1 4 339.507 98226 1 3 274.755

1s32 307200 1 5 325.256 96164 2 3 282.252

1s36 307200 3 9 444.23 75436 4 6 368.704

1s41 307200 3 4 338.192 78399 2 4 264.416

Table 4.2: Table for this approach plane detection
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(a) (b)

(c) (d)

Figure 4.10: Example of the planes detected on some scenes by both approaches.

In a) and b) the results from a living room scene for our approach and for Ransac,

respectively. In c) and d) the results for a living room, in c) the results for our

approach and in d) for Ransac

with the full PCD, if the point cloud is downsampled, the RANSAC algorithm

is faster. The maximal error for the planes detected by the RANSAC algorithm

can be expected to be smaller compared with the one from the planes detected

by our approach since the detected planes can incorporate small curvatures to

the surfaces, which has already be explained as a helpful characteristic for our

approach. Tables 4.1 and 4.2 there are the number of planes detected and

execution times for both approaches.

This chapter gave an overview on how to extract different geometrical

components, the next one will explain how to characterize them in order to

characterize the furniture based on the combination of the geometrical compo-

nents.
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Chapter 5

Graphs Representation

In this chapter we describe how geometrical components are characterized and

merged into a graph, in order to provide an useful representation for each piece

of furniture. These graphs are used also for the furniture detection.

5.1 Geometrical Components

Given a piece of furniture, we can decompose it into different parts that roughly

can approximate geometric shapes. For example, a table can be decomposed

into a horizontal plane and (regularly) four legs that can be approximated to

cylinders or rectangular prisms These are the parts, which we will refer to as

geometrical components.

There can be different types of geometrical components, in the previous

example of the dinning table there are two types: the horizontal plane and the

legs, but there can be more types, for example the backrest of a chair will be

approximate to a vertical plane.

We define a set Gc, which contains Nk different types of geometric compo-

nents. Each geometric component Gck can be composed by a non homogeneous

set of characteristics that describe it, defined as:
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Gck = {ftk1 , ftk2 , ..., ftkn
ftk
} (5.1)

where k designate an element from the set Gc. Then a geometric component

Gck is composed by a set of nftk characteristics ftk.

Each types of geometrical components can have its own set of character-

istics or they can share some or all the characteristics.

5.1.1 Characteristics of Geometrical Components

Characteristics or features of a geometrical component can be of various types

or sources, for example, for a horizontal plane, theses characteristics can be:

their height, area and relative measures.

Every geometrical component must be characterized in order to describe

the complete piece of furniture. By simplicity, at this point, all the geometrical

components have the same characteristics, but more can be added or replaced in

the future. Features or characteristics of the geometrical components considered

are:

• Height: The average height of the points belonging to the geometric

component.

• Height Deviation: Standard height deviation of the points in the peak

or region.

• Area: Area covered by the points.

In Figure 5.1, are shown the values of each characteristic for the main

horizontal plane of some furniture models; the parallelepipeds represent the

uncertainty (computed as variations) for each variable. It can be observed how

the selected types of furniture are fully separable with this three characteristics.
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Figure 5.1: Characteristics of the main geometrical component (horizontal

plane) for diverse pieces of furniture

5.1.2 Similarity Between Geometrical Components

In order to compare, geometric components from models to geometric compo-

nents extracted from a scene, we have proposed a similarity measure.

In general, a similarity measure sGc of two geometric components Gck

and Gck′, both of the same type k, has been defined as:

skGc(Gc
k, Gck′) = 1−

nk
ft∑
i

wk
Gid(ftki , ft

k′
i ) (5.2)

where k represents the type of geometric component, wGi are weights and

d(ftki , ft
k′
i ) is a function of differences for the ith feature of the geometric com-

ponents Gck and Gck′, defined as follow:

Be

δϕ =
|ftki − ftk′i | − εfti

ftki
(5.3)
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d(ftki , ft
k′
i ) =


0, δϕ < 0

δϕ, 0 ≤ δϕ ≤ 1

1, δϕ > 1

(5.4)

where εfti is a measure of uncertainty related to the ith characteristic. This

function normalize the difference to assure that the result will be between zero

and one; zero when the two characteristic are practically equal (considering the

uncertainty) and one when they are totally different. Another expression for Eq

5.4 is

d(ftki , ft
k′
i ) = max(min(

|ftki − ftk′i | − εfti
ftki

, 1), 0) (5.5)

The uncertainty will reflect the changes that the characteristics could

have. This is primarily due, by the noise of the sensor, but also by other factors,

as a floor not regular, calibration imprecisions or so on. In other words, small

variations can be expected between different executions. In the next section

there will be an explanation on how these uncertainties are calculated.

5.2 Graph Representation

Taking into account, the common definition of a graph, as an ordered pair

G = (V,E) comprising a set V of vertices or nodes, and a set E of edges or arcs;

a piece of furniture F i has been defined with a graph representation as follow:

F i = (V i, Ei), with i = [1, ..., Nf ] (5.6)

where F i is an element from the set of furniture models F ; the sets V i and

Ei contains the vertices and edges associated with the ith class and Nf is the

number of models in the set F .

The set of vertices V i and the set of edges Ei are described by lists as
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follows:

V i = {vi1, vi2, ..., vini
v
} (5.7)

Ei = {ei1, ei2, ..., eini
e
} (5.8)

where niv and nie are the number of vertices and edges, respectively, for the ith

piece of furniture.

The functions V (F i) and E(F i) are used to recover the corresponding

lists of vertex and edges of the graph F i .

An edge eij is the jth link in the set, joining two nodes or vertex for the

ith piece of furniture. As connections between nodes are a few, it is possible to

use a simple list to store them. Thus, each edge eij in the list is described by:

eij = (a, b) (5.9)

where a and b correspond to the linked vertices via, v
i
b ∈ V i, such that a 6= b;

and since the graph is an undirected graph eij = (a, b) = (b, a).

5.2.1 Furniture Graphs

Once we have the models of the furniture and the geometric components has

been extracted and characterized, it is possible to construct a graph to represent

each piece of furniture.

Be F ∗ a piece of furniture, for example a dinning table, therefore as

stated on (Eq. 5.6), the graph is described by:

F ∗ = (V ∗, E∗)

where V ∗ has five vertices and E∗ four edges, in other words, nv = 5 and ne = 4.

The five vertex correspond to: one vertex for the horizontal surface of the dining

table and one for each of the four legs. As have been stated, the horizontal plane
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is selected as the main vertex. The edges correspond to the union between each

leg and the horizontal plane.

In Figure 5.2(a), it is presented the graph corresponding to a dinning

table. In a similar way, Figure 5.2(b) represent the graph of a chair. On last

case, there is one more vertex, which is an vertical component corresponding to

the backrest of the chair.

table

leg

leg

leg

leg

Horizontal

Leg

(a)

Seat

Vertical

Backrest

Leg

LegLeg

Leg

HorizontalLeg

(b)

Figure 5.2: Example of complete graphs models for: a) a dinning table and b)

a chair; different shapes represent different types of geometric components

An example for list of vertices and edges for the dinning table would be:

V table = {table, leg1, leg2, leg3, leg4}

Etable = {(table, leg1),

(table, leg2),

(table, leg3),

(table, leg4)}
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And for the chair :

V chair = {seat, backrest, leg1, leg2, leg3, leg4}

Echair = {(seat, backrest),

(seat, leg1),

(seat, leg2),

(seat, leg3),

(seat, leg4)}

5.2.2 Partial Views

Considering the different viewpoints from which a robot can observe a furniture.

It is clear that its perception is a reduced version of the proposed representation

since not all geometrical components are visible from any position.

Graphs representation correspond to the whole piece of furniture, then

some subgraphs should be generated corresponding to different views that a

robot can have.

Considering the following definition, a graph H is called a subgraph of

G, such that V (H) ⊆ V (G) and E(H) ⊆ E(G).

Then a partial view Fpi for a furniture is a subgraph from F i, described

by:

Fpi = (Ṽ i, Ẽi) (5.10)

such that Ṽ i ⊆ V i and Ẽi ⊆ Ei. There are as many partial views as subsets

can be generated from F i, however not all partial views are useful.

To generate a small set of sub-graphs corresponding to partial views,

different points of view have been grouped in four quadrants, so there are: two

graphs for the front left and right views and two more for the back view left

and right (Figure 5.3). However, due to symmetry and lack of occlusions, the

set of subgraphs can be reduced, for example for the dinning table, there is only
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Figure 5.3: Visualization the different points of view used to generate partial

views.

one graph without subgraphs, as its four legs can be seeing from many points

of view. This subgraphs help us to improve and reduce the search space when

we compare a scene graph with a model graph. If a piece of furniture has some

opposite sides, the robot should not expect to view both.

Consequently graphs require also to specify which planes are on opposite

sides (if there are any), because this information is important in order to specify

which components are visible from every view. Visibility of a given plane is

encoded at the vertex. For example, for a chest of drawers is not possible to see

the front and the back at the same time. It is not possible to see the right and

the left side of a couch together. But, it is possible to see, at least partially, the

four legs of a table.

The Figure 5.4 shows an example of a graph model and some sub-graphs

for a couch graph model. It can be observed on Figure 5.4(a), the small rect-

angles to the side of the nodes indicating the opposite nodes. The sub-graphs

(Figures 5.4(b) and 5.4(c)) represent two sub-graphs of the frontal views left and

right respectively. The reduction of the graph can be observed, for example, in

these cases the backrest and the front nodes are present, so the rear node is not,

since it would not be visible for the robot from a front view of the furniture.

Thus, a subgraph avoid to compare components which are not visible from a

given point of view.

In order to match, robot perception with generated models, some simi-
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armrest armrestseat

backrest
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front
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rear
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rear
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(a)

Vertical
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armrest armrestseat

backrest

top

front

side

(b)

Vertical

Horizontal

armrest armrestseat

backrest

top

front

side

(c)

Figure 5.4: In a) the graph corresponding to the complete couch graph and in

b) and c) two sub-graphs for the front left and right views

larity measurements for Graphs and Geometric Components should be defined.

At the following, these measurements will be defined.

5.2.3 Similarity Between Graphs

The similarity sF of two furniture graphs (or partial graphs) F i and F i′ has

been defined as:

sF (F i, F i′) =

nv∑
j

wFjs
k
Gc(Gc

k
j , Gc

k′
j ) (5.11)
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where wFj are weights, corresponding to the contribution of the similarity sGc

between the corresponding geometric components j to the graph model F i.

In next section, values for proposed equations (5.2) and (5.11), in a spe-

cific context and environment will be provided.

5.3 Determination of values for models and ge-

ometric components

In order to validate the proposed approach, a home environment has been used.

This environment is composed of six different pieces of furniture (Nf = 6),

which are:

F = {dinning table, chair, couch, center table,

bed, chest of drawers}

To represent the components of those pieces of furniture, it has been

selected the following three types of geometric components:

Gc = {horizontal plane, vertical plane, legs}

and the features of the geometric components are the described on section 5.1.1.

5.3.1 Weights for the geometrical components comparison

In order to compute the proposed similarity sGc between two geometrical com-

ponents, it is necessary to determine the corresponding weights wGi in (Eq.

5.2). At this stage of the work, those values have been determined empirically,

as follows:

From a set of scenes taken by the robot, it was selected a set of them

where each piece of furniture were totally visible. Then, geometric components
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were extracted following the methodology proposed on section 5.1. The weights

then were selected according to the importance of each feature to a correct

classification of the geometric component.

Table 5.1, shows the corresponding weights for the three geometric com-

ponents.

wk
G1

(height)

wk
G2

(h. deviation)

wk
G3

(area)

wH
Gi

(horizontal) 0.65 0.15 0.25

wV
Gi

(vertical) 0.5 0.2 0.3

wL
Gi

(legs) 0.5 0.2 0.3

Table 5.1: Weights for similarity estimation

5.3.2 Uncertainty

Uncertainty values in Eq 5.3, were estimated also by an empirical process. From

some views selected for each piece of furniture, where it was fully observable, it

was calculated the differences with its correspondent model; in order to have an

estimation of the variation of corresponding values, with the complete geometric

component. Then the biggest difference for each characteristic was selected as

the uncertainty. As it can be seen on the graphic of Figure 5.1, the use of

characteristics as: height, height deviation and area; are enough to classify main

horizontal planes. Moreover, over this space, characteristics and uncertainty

from each horizontal plane makes regions fully classifiable.

There are other features of the geometrical components not used for sim-

ilarity computation, but that are helpful to define the type of geometrical com-

ponent or their relations, so they have also been added to the vertex structure;

these features are:

• Center: The 3D point center of the points that make up the geometrical

component.
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• PCA eigenvectors and eigenvalues: Eigenvector and eigenvalues re-

sulting of a PCA analysis to the region points.

These values are used to verified the type of geometric component, par-

ticularly to discriminate between vertical planes and poles, because they have

been extracted with the same process.

5.3.3 Weights for the graphs comparison

In a different way, as weights were determined for (Eq. 5.3), the weights for the

similarity between graphs (Eq. 5.11) were calculated based on the total area of

models for each piece of furniture.

Given the projected area of each geometric component of the graph model

the total area is calculated. Then, the weights for each vertex (geometric com-

ponent) has been defined as the percentage of its area in comparison to the

total area. Moreover, when dealing with a sub-graph from a model, the total

area is determined by the sum of areas from the nodes from that particular

view (sub-graph). Thus, there is a particular weight vector for each graph and

subgraph in the environment.

In Table 5.2, are shown the values of computed areas for the chest of

drawers corresponding to the graph and subgraph of the model (Figure 5.5).

side front side back top

area 1575.5 9155.5 1575.5 9155.5 1914

Model % 6.74 39.16 6.74 39.16 8.19

Partial View % 12.45 72.41 15.13

Partial View % 72.41 12.45 15.13

Table 5.2: Example of the weights for the comparison of the chest of drawers

graph, based on the area of each geometric component

Table 5.3 shows the weights in the case of the dinning table, which does

not have sub-graphs (Figure 5.2(a)).

In this chapter we have explained the graph representation proposed to
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front

back

side sidetop

Vertical

Horizontal

(a)

Vertical

Horizontal

front

side top

(b)

Vertical

Horizontal

front

sidetop

(c)

Figure 5.5: Graphs models for the chest of drawers, in a) the graph for the full

model, in b) and c) graphs for partial front views, left and right, respectively

characterize the furniture and how the comparisons will be made. In the next

chapter, we will present the evaluation of propose approach and the results

obtained.
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table leg leg leg leg

area 8159 947 947 947 947

Model % 68.31 7.92 7.92 7.92 7.92

Partial View % 68.31 7.92 7.92 7.92 7.92

Table 5.3: Example of the weights for the comparison of the dining table graph,

based on the area of each geometric component
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Chapter 6

Evaluations

Considering an observation of a scene, where geometrical components has been

extracted, by applying the methods described on section 5.1.

Be O the set of all geometric components observed on a scene, then:

O = {O1, ..., ONk} (6.1)

where Ok are the subsets of geometrical components of the type k.

In this way, observed horizontal geometrical components found on the

scene are on the same subset, lets say O∗, then it is possible to extract each

one of them in the subset and then compare them to the main nodes for each

furniture graph.

Once the similarity between the horizontal components on the scene and

the models has been calculated, all the categories with the similarity higher than

certain threshold are chosen as probable models for each horizontal component.

A graph is then constructed for each horizontal component, where adjacent

geometrical components are merged to it. Then this graph is compared with

the sub-graphs of the probable models, previously selected.

The scene in Figure 6.1 is composed by a dinning table and a chair.

After the geometrical components are extracted, the two horizontal planes cor-
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Figure 6.1: Example of the geometric components detected, in a) a scene from

a living room and in b) the geometric components coloured .

responding to the dinning table and the chair are selected.

A comparison of those horizontal components to each one of the main

nodes of the furniture graphs is performed. The similarities computed can be

observed in table 6.1. It can be observed for the plane labelled as “H0” that

there are two similarities higher than the previously defined threshold of 0.7,

the table and the chest of drawers. For the plane labelled “H01” there are three

probable models (chair, center table and couch).

table chair bed couch c of drawers c table

H00 0.8743 0.0 0.4780 0.5128 0.8014 0.6270

H01 0.5794 0.9891 0.6977 0.7277 0.5929 0.8895

Table 6.1: Similarities measures of two geometrical components

Next, graphs are constructed for each horizontal plane (the main node)

and adding its adjacent components; in this case, both graphs have only one ad-

jacent node (Figure 6.2). Those planes previously detected that are not attached

to any graph (like the walls) are now discarded.

The Figure 6.3(a) shows the generated graph (“G0”) from the plane

“H00” on the scene. Figures 6.3(b) and 6.3(c) shows and the partial-views

graphs from the selected probable models. Fig 6.3(b) for the table and Fig

6.3(c).
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Figure 6.2: Example of graphs created, in a) the different geometric components

coloured and in b) two graphs created with those geometric components.

It can be observed that “G0” has an adjacent leg node, so it can only

be a sub-graph for the table graph since the chest of drawer graph has only

adjacent vertical nodes.

Horizontal

Leg

H00

V02

(a)

table

leg

leg

leg

leg

Horizontal

Leg

(b)

Vertical

Horizontal

front

side top

(c)

Figure 6.3: Graph comparison. In a) one of the graph generated from the scene

in Fig 6.5(b), in b) and c) partial graph from the table and the chest of drawers

The graph “G1”, created from the plane “H01” is shown in Figure 6.4(a).

Figures 6.4(b), 6.4(c) and 6.4(d) show the partial view graph for the selected

probable models; chair, table and couch, respectively.

It can be observed that the graph “G1” has a vertical node, so it is
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matched to the backrest node of the chair and of the couch (Figs. 6.4(b) and

6.4(d)); and there are no match with the center table graph (Figure 6.4(c)).

Horizontal

Vertical

Backrest

Seat

(a)

Seat

Vertical

Backrest

Leg

LegLeg

Leg

HorizontalLeg

(b)

table

leg

leg

leg

leg

Horizontal

Leg

(c)

Vertical

Horizontal

armrest armrestseat

backrest

top

front

side

(d)

Figure 6.4: Graph comparison. In a) one of the graph generated from the scene

in Fig 6.5(b), in b), c) and d) partial graph from the chair, the center table and

the couch.

The similarity for adjacent nodes are noted in the table 6.2. Graph

similarity is calculated with Eq. 5.11 and shown in the last column of the table.

The “G0” is selected as a table and “G1” as a chair (Figure 6.5(c)). It should

be noted that the “G0” is selected as a table even when its detected horizontal

planes is incomplete, however the amount of points in this case was enough to

discriminate it from the other models.

Figure 6.5 shows the results of applying the described procedure to dif-

ferent scenes with different types of furniture. The first column (Figs. 6.5(a),

6.5(d), 6.5(g) and 6.5(j)) shows the point clouds from the scenes. The column at

the center (Figs. 6.5(b), 6.5(e), 6.5(h) and 6.5(k)) show the geometrical compo-

nents found on the corresponding scene. Finally the last column (Figs. 6.5(c),

6.5(f), 6.5(i) and 6.5(l)) show the generated graphs that correctly classified.
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Main Node Main

Node

Sim.

Adjacent

Nodes

Adjacent

Node

Sim.

Graph

Similarity

H00
Table V02 Table leg 0.0.6670

0.8743 0.7015

H00
Chest of

Drawers

V02 No Match X

0.8014

H01
Chair V01 Backrest 0.5740

0.9891 0.8878

H01
Center

Table

V01 No match X

0.8895

H01
Couch V01 Backrest 0.3204

0.7277 0.7150

Table 6.2: Example for graph classification
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.5: Results for the furniture detection, each row shows one scene. In

a), d), g) and j) the original point clouds. In b), e), h) and k) are shown

the geometric components found, the vertical planes are in color green, the

horizontals in yellow and the legs in red. The bounding boxes in c), f), i) and l)

show the graph generated that were correctly identified as a piece of furniture
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Chapter 7

Conclusions

The obtained conclusions for this work can be listed as:

• We propose a graph representation for pieces of furniture, based on geo-

metrical components. Where each one of these geometrical components

correspond roughly to a different part of the furniture. This representation

proved to be useful for furniture detection.

• Representation of geometrical components based on characteristics ex-

tracted from 3D data

• We develop a method for extracting geometrical components. The al-

gorithm proposed for the extraction of 3D horizontal planes is based on

an analysis of height histogram. This approach allows a linear computa-

tional time which is an improvement from the common plane extractions

algorithms. For vertical planes a similar approach is used based on 2D

histograms.

• We propose two effective similarity measures. One for comparing geo-

metrical components and another for comparing graphs for models and

scenes

• To validate this approach we perform several evaluations in two different

house-like environments at the
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In the future, other geometrical components or characteristics could be

added, this could be done easily thank to the nature of our representation.

Having more geometrical components would allow us to also incorporate new

types of furniture.
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