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Abstract

Many different applications in engineering, science and industry have a consider-
able degree of complexity, and sometimes this complexity may be based on the
presence of multiple conflicting objective functions, which must be simultaneously
optimized. These kinds of problems are the so-called multi-objective optimization
problems (MOPs). However, in everyday life, most optimization problems are not
static in nature and usually have at least one objective that can change over time. In
recent years, MOPs in dynamic environments have attracted some research efforts.
However, most research focuses on either static multi-objective optimization or dy-
namic single-objective optimization. Therefore, not much research has been done on
Dynamic Multi-Objective Optimization (DMO). Evolutionary algorithms and Ar-
tificial Immune System (AIS) have been popular to solve dynamic single objective
optimization problems. Nevertheless, such combination has been scarcely explored
when solving DMOPs. On the other hand, a few Differential Evolution(DE)-based
algorithms have been proposed. In this thesis, two Differential Evolution-based
algorithms to solve dynamic multi-objective optimization problems (DMOPs) are
proposed. The novelty of these algorithms with respect to other approaches is the
fact that the algorithms take advantage of DE and AIS to track the changes in the
environment and respond quickly when a change is detected. Three main issues of
the algorithms are explored: (1) the general performance of both algorithms in com-
parison with other well-known algorithms, (2) their sensitivity to different change
severities and frequencies, and (3) the role of their change reaction mechanism based
on an immune response. For such purpose, different performance metrics, four unary
and one binary, are computed in a comparison against other state-of-the-art dynamic

multi-objective evolutionary algorithms (DMOEAs) when solving a novel suite of test
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problems. The statistically validated results indicate that the proposed approaches
are robust to change frequency and severity variations and can track the environ-

mental changes finding a good distribution of solutions.
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Chapter 1
Introduction

In Engineering, Science and Industry there are many cases where a research goal
can be translated into an optimization problem. For example, mechanical engineers
are interested in designing mechanical components for the purpose of achieving ei-
ther a minimum manufacturing cost or maximum component life. In production
plants, engineers are interested in designing optimum schedules or different machine
operations to minimize the idle time of machines and the overall job completion.
Civil engineers, on the other hand, are involved in designing structures in order to
achieve a minimum overall cost or maximum safety or both [17, 23]. Therefore, all
the above-mentioned examples involve the minimization or maximization of different

tasks (collectively known as optimization) of an objective [23].

Real-world optimization problems have a considerable degree of complexity, and
this complexity may be based on the presence of multiple conflicting objective func-
tions, which must be simultaneously optimized. This kind of optimization problems
is known as Multi-objective Optimization Problems (MOPs). In the case of single-
objective optimization, a single optimal solution should be reached (the global opti-
mum). In contrast, in multi-objective optimization, a set of solutions with different
trade-offs among the objectives is usually achieved.

There are several mathematical programming methods which have shown to be
effective for solving MOPs. However, there are cases where these methods can not
guarantee that the solution obtained is optimum. Also, some mathematical pro-

gramming methods can be inefficient or even inapplicable for particular problems.

15
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Because of these reasons, the use of meta-heuristics as Evolutionary Algorithms

(EAs) to solve MOPs has become increasingly popular.

Evolutionary algorithms have shown being good candidates to solve MOPs in a
single run, compared to classical methods such as gradient descent and simulated
annealing [26],[20]. Therefore, in the last few years, there have been significant con-
tributions to Multi-objective Evolutionary Algorithms (MOEAs) design. Different
MOEASs currently proposed are capable of attaining the multi-objective optimization

goals with high efficacy regarding convergence and diversity of solutions [24, 94, 101].

In recent years, MOPs in dynamic environments have attracted some research
efforts. Therefore, the so-called Dynamic MOPs (DMOPs) are gaining attention
[77]. Initially, not much research had been done on Dynamic Multi-Objective Op-
timization (DMO) [2, 33], but in the last few years, more researchers focused on
solving DMOPs using nature-inspired meta-heuristics. Evolutionary algorithms and
Artificial Immune Systems (AIS) have been popular to solve dynamic single objec-
tive optimization problems [13, 42, 73, 91, 105]. Nevertheless, such combination has

been scarcely explored when solving DMOPs [8].

Differential Evolution (DE) has been widely applied to solve static optimization
problems. Furthermore, it has shown a high convergence rate with a higher degree
of robustness than other meta-heuristics [68]. In addition, different from other meta-
heuristics, the DE algorithm does not use a fixed distribution, instead, it generates
a diverse set of search directions based on the distribution of solutions in the current
population. This last feature seems to be one of its main advantages because it allows
a better exploration of the search space [68]. Despite of the excellent performance
of DE solving static optimization problems, it has been little applied in DMO [95].
Therefore, an important goal of this thesis aims to analyze the behavior of DE solving

dynamic multi-objective problems.

In DMO, maintaining population diversity is a very important task, if the pop-
ulation diversity is lost prematurely, then tracking the new optimal positions in the
environment becomes more difficult. AIS have shown a competitive performance
solving multi-objective optimization problems in dynamic environments. The cycle
of the immune response against foreign components in the organism (antigens) has

different dynamic characteristics like adaptation, diversity maintenance, dynamism,
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and detection. This is the main motivation to use immune ideas for solving dynamic

optimization problems.

One of the most important features that should be considered for the design of
dynamic optimization algorithms is that such algorithms must present not only a fast
convergence level but also a good mechanism to promote diversity [107]. However,
convergence in dynamic optimization could lead to several problems. For example,
the optimization algorithm could find it difficult to find the global optima due to
the lack of diversity once it has already converge in a particular region of the prob-
lem landscape [77]. Since the dynamic characteristics of AIS enhance algorithms
population diversity and the good performance of DE as global optimization algo-
rithm promotes a good convergence, it is expected that the combination of these two
meta-heuristics leads to the design of a new competitive algorithm able to track the

changes in the environment.

On the other hand, in multi-objective optimization, the survival selection mech-
anism plays an important role to determine the quality of the solutions that are able
to survive through the optimization process. Different survival selection mechanisms
have been proposed being the most popular the Pareto-based selection mechanism.
However, different studies suggest that MOEAs based on Pareto have difficulties
when solving MOPS with more than three objectives [54]. So, there has been a
lot of research regarding the design of alternative selection mechanisms as the use
of performance metrics to guide the search. Even though different works regarding
MOEAs based on performance metrics or indicators have been proposed for static
multi-objective optimization, to the best of the author’s knowledge, there is not an
approach which uses a performance metric in the selection mechanism to guide the
search when solving DMOPs. For the reasons described above, in this thesis, the

design of a dynamic optimization algorithm based on an indicator is also proposed.

In this thesis, two new Dynamic Multi-Objective Evolutionary Algorithms (DMOEAs),
namely Immune Generalized Differential Evolution (Immune GDE3) and Distance-
based Immune Generalized Differential Evolution (DIDGDE) are proposed. The
novelty of these algorithms with respect to other approaches is the fact that the
algorithms take advantage of DE and AIS to track the changes in the environment

and respond quickly when a change is detected.
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1.1 Problem statement

As mentioned above, optimization problems that occur in situations of everyday life
are normally not static in nature. Some examples of these problems are: schedul-
ing, robot path planning, air traffic control, routing in telecommunication networks,
etc. [1, 11, 78, 89, 104]. These problems are called dynamic or non-stationary. A
dynamic optimization problem may also involve more than one objective to be op-
timized and those problems are called Dynamic Multi-objective Optimization Prob-
lems (DMOPs).

Optimization in a changing environment is a challenging task, especially when mul-
tiple objectives need to be optimized. The search then requires a fast convergence
in the current problem conditions and also quick responses after changes [8]. In this
way, it is very important to design approaches that could detect a change in the
environment and then finding the new Pareto optimal front as soon as possible in
the presence of new changes. In addition, the study on this optimization area is still
limited due to a lack of standard benchmark problems and appropriated performance
metrics [5, 44, 45, 47, 48].

There has been research regarding different mechanisms to design dynamic multi-
objective evolutionary algorithms [5, 77]. However, some of those mechanisms have
several limitations, e.g., mechanisms which introduce diversity during the optimiza-
tion process usually depend on the ability of the optimization algorithm, and some-
times such algorithm presents difficulties tracking the new positions of the Pareto
optimal front. Furthermore, they may not efficiently work when the changes of
the problem are severe or fast. The use of multiple populations in the design of
DMOEAs can affect the performance of the optimization algorithm; approaches
based on prediction mechanisms depend on how well the predictors are trained;
the use of memory-based approaches has the disadvantage that they can generate
redundant information and may not necessarily promote diversity [77]. Therefore, in
this thesis, the design of two DMOEAs able to track the changes in the environment
as quickly as possible and to obtain solutions that are spread along the Pareto front
as uniformly as possible, is presented.

On the other hand, an important issue in dynamic multi-objective optimization is the
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performance comparison of different algorithms. Therefore, different performance
unary metrics traditionally used to evaluate the performance of multi-objective op-
timization evolutionary algorithms (MOEAs) have been adapted to work with DMO
[77]. However, previous studies have shown in general that unary indicators are not
capable of indicating whether the quality of an approximation set is better than an-
other, even if several sets of unary indicators are used [109]. Hence, binary quality
indicators enhance the empirical evidence, on which it is possible to detect whether
an algorithm performs better than another. Therefore, in conjunction with unary
indicators, binary ones can be used to complement the performance evaluation of
an algorithm [109]. Due to this reason, among the metrics used to evaluate the
performance of DMOEASs, to the best of the author’s knowledge, a binary metric
has not been yet adapted to compare DMOPs. In this thesis, a binary metric called

C-metric is also adapted to evaluate the performance of dynamic MOEAs.

1.2 Hypothesis

From the previous paragraphs, the main hypothesis for this research is the following:

A model based on Differential Evolution and inspired by an immune response,
particularly in the clonal selection algorithm, will lead to the design of a Dynamic
Multi-objective Evolutionary Algorithm for solving DMOPs with a highly competi-

tive performance. So that, it has the following features.

o It has good performance concerning the two following aspects:

— It is able to track the new positions of the Pareto optimal front in each
time step, obtaining solutions that are, as close as possible, to the Pareto

Optimal Front.

— It can produce solutions with a uniform distribution along the Pareto

front in each time step.

o It can efficiently work solving problems with different change frequencies and

change severities.

o It takes the advantages of different mechanisms to deal with dynamic environ-

ments to obtain competitive results.
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1.3 Goals

1.3.1 Main goal

The main goal of this thesis is to advance the state-of-the-art in dynamic multi-
objective optimization, particularly regarding the design of a dynamic multi-objective
nature-inspired algorithms, which combine the advantages of MOEAs and other
meta-heuristics as AIS. Also, it is of our interest to design DMOEAs that use per-

formance metrics to guide the optimization process when solving DMOPs.

1.3.2 Specific goals
The specific goals of this thesis are the following:

« To gain a deep knowledge of the state-of-the-art regarding DMOEASs; including
their main mechanisms and their advantages and disadvantages. The aim is
to identify possible improvements that lead to the design of a new DMOEA,
which is more efficient than state-of-the-art DMOEAs used in this research
field.

e To advance knowledge within dynamic multi-objective optimization by devel-
oping an efficient DMOEA which combines the advantages of MOEAs and
other meta-heuristics as AIS. This DMOEA must comply with desirable fea-
tures (efficiency, fast convergence, good tracking ability, good distribution of

solutions).

o To analyze the feasibility of using a performance metric to guide the search
in the optimization process in the dynamic optimization area. Therefore, a
DMOEA based on a performance metric should be designed. This DMOEA

also must comply with desirable features listed in the above item.

o To identify representative state-of-the-art DMOEAs for performance assess-

ment.

o To analyze the efficiency of the proposed approaches to solving DMOPs with

different frequencies and severities of change.
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e To perform a comparative study between the proposed approaches and other
popular state-of-the-art DMOEAs.

o To validate the performance of the proposed approaches with respect to other
popular state-of-the-art DMOEAS. This validation will be done with a set
of benchmarks functions representative of dynamic multi-objective optimiza-
tion. Performance will be assessed using performance measures usually adopted

in multi-objective optimization that quantifies the performance of DMOEAs.

o To analyze the ability of the designed algorithms to track the changes in the

environment.

e To understand the role that the immune response plays in the performance of

the proposed approaches.

o To analyze the behavior of DE solving dynamic multi-objective problems.

1.4 Expected contributions

e A new DMOEA based on DE which combines different mechanisms to deal

with changes in the environment.

e A new DMOEA that uses a performance metric to guide the search in the

optimization process.

e A detailed empirical study of the proposed approaches. This study must be
based on an in depth statistical analysis that considers well-known DMOEAs,
standard test problems and performance measures commonly adopted in the

specialized literature.

o An adaptation of a binary metric to evaluate the performance of DMOEAs in

dynamic multi-objective optimization.
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1.5 Publications

In the following, the products obtained during the development of this thesis are

presented.

1.5.1 Journal papers

e Maria-Guadalupe Martinez-Penaloza and Efrén Mezura-Montes. Immune Gen-
eralized Differential Evolution for Dynamic Multi-Objective Environments: An

empirical study, Knowledge-Based Systems, vol. 142, pages:192-219, 2018.

o Héctor Cervantes-Culebro, Carlos A. Cruz-Villar, Maria-Guadalupe Martinez-
Penaloza, Efrén Mezura-Montes, Constraint-Handling Techniques for the Con-
current Design of a Five-Bar Parallel Robot, IEEE Access, 5(1):23010-23021,
2017.

o Maria-Guadalupe Martinez-Penaloza, Efrén Mezura-Montes, Hernan Aguirre
and Alicia Morales-Reyes. Distance-based Immune Generalized Differential
Evolution algorithm for Dynamic Multi-Objective Optimization, Applied Soft
Computing, (to be submitted).

1.5.2 International conference papers

o Maria-Guadalupe Martinez-Penaloza and Efrén Mezura-Montes, Immune Gen-
eralized Differential Evolution for Multi-objective Dynamic Optimization Prob-
lems, in Proceedings of the IEEE Congress on Fvolutionary Computation,
pages: 1918-1925, IEEE Press, 2015.

1.6 Methodology

Firstly, the DMO literature was reviewed to determine the limitations with regards
to: (1) the development of DMO algorithms, especially concerning evolutionary algo-
rithms, (2) benchmark problems for DMO, and (3) performance metrics to evaluate
the performance of the developed DMOEAs.
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Secondly, a bio-inspired algorithm to solve DMOPs must be proposed and vali-
dated empirically using a novel suite of test problems. Figure 1.1 presents the general

methodology followed in the development of this thesis.
Study the state-of — ety thetmalfn Design the nature- Select a set of
the-art of DMO con&r&zgz:: ° inspired algorithm benchmark functions W

L Select DMOEAs for Carry out a set of . _— -
. . Comparison results Statistical validation
comparison purposes experiments

Figure 1.1: General methodology adopted in the thesis.

1.7 Structure of the document

This document is organized in seven chapters. The first four chapters (including this
one) describe basic concepts required, on the one hand, to understand the contribu-
tions of this thesis, and, on the other hand, to support the contents of the following
chapters.

In Chapter 2, basic concepts related to optimization are presented. Addition-
ally, mathematical definitions of single-objective and multi-objective optimization
problems are introduced. Finally, in Chapter 2, some mathematical programming
methods traditionally used for solving MOPs are also presented. Chapter 3, presents
a brief introduction to MOEAs and describes some of the most popular state-of-the-
art MOEAs. In addition, some performance metrics to evaluate MOEAs are also
introduced. The mathematical definition of DMOPs is introduced in Chapter 4.
Furthermore, the related work concerning DMOEAS is also given in this chapter. In
Chapters 5 and 6, the contributions of this thesis are presented. Two new DMOEAs
are proposed, evaluated and compared with respect to other well-known DMOEAs.
In Chapter 5, the proposal and empirical validation of a novel DMOEA called Im-
mune GDES3 is presented. In Chapter 6, a DMOEA based on Inverted Generational
Distance indicator is presented. This DMOEA is an improved version of Immune
GDE3 algorithm. Finally, Chapter 7, provides the concluding remarks and possible

directions for future work.



Chapter 2
Optimization Background

This chapter presents a theoretical overview related to optimization. Therefore, the
main goal of this chapter is that the reader familiarizes with the basic concepts,

definitions, and notations that are used throughout this thesis document.

2.1 Optimization concepts

Optimization refers to the process of finding the minimum or maximum possible
solution to a given problem. Each optimization problem contains one or more ob-
jective functions, a set of decision variables and most of them also contains a set of
constraints. The objective function is the mathematical function that expresses the
objective to be minimized or maximized. The objective function is also known as the
fitness function, the cost function or optimization criterion. Each objective function
has a vector of decision variables Z that influence the value of the objective function.
When an optimization problem has constraints, the set of constraints restricts the
possible values that can be assigned to the decision variables. The set of all possible
values of ¥ that satisfy the problem’s constraints forms the feasible region F which
is a subset of the search space. Throughout this thesis, without loss of generality,
minimization is assumed.

According to the number of objectives to be optimized, optimization problems can
be classified as single-objective optimization problems (SOPs) and multi-objective

optimization problems (MOPs). The former are problems which involve only one

24
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objective function and the latter problems which involve more than one objective

function.

2.2 Single-objective optimization

Definition 1. Single-objective optimization problem: Mathematically, a SOP
can be defined as: Find the vector Z = [z, xo, . . ., xn]T which minimizes the function
f(Z) subject to & € F, where F C R™ is the feasible region which satisfies the m

inequality constraints:

and the p equality constraints:

hi(Z)=0 j=1,2,....p

The feasible solution z* € F that corresponds to the smallest value of f(Z) in all
the search space is known as global optimum.
To understand the complexity involved in solving an optimization problem, the

following definitions are introduced.

Definition 2. Global minimum: Given a function f(Z) defined on a set F, a

1

solution * € F is called global minimum * of the objective function f, if only and

if:
Vi e F: f(Z) < f(&) (2.1)

Definition 3. Local minimum: Given a function f(Z) defined on a set F, a

solution # € F is called local minimum, if and only if:

Vi€ F: (&) < f(#), suchas: |7 — & < e (2.2)

where € > 0 and the value f(#') is called local minimum.

!The global minimum may not be unique i.e., an optimization problem can have more than one
global minimum.
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2.3 Multi-objective optimization

In the field of optimization, usually real-world problems have a considerable degree of
complexity, and this complexity may be based on the presence of multiple conflicting
objectives to be optimized. This kind of optimization problems are known as multi-
objective optimization problems (MOPs).

Multi-objective optimization is the process of simultaneously optimizing a vector
function whose elements represent the objective functions which are normally in con-
flict with each other. Therefore, solving MOPs implies finding trade-offs among all
the objective functions. In this kind of problems, a set of optimal solutions is obtained
instead of a single one as in the case of SOPs. This is because in multi-objective
optimization it is not possible to find a single optimal solution which optimizes all
the objective functions simultaneously [19].

In the following, some general concepts and notations regarding to Multi-objective

optimization are presented.

Definition 4. Multi-objective optimization problem: Mathematically, a gen-

eral multi-objective optimization problem (MOP) can be formally defined as:

Find & = [x1, 29, ... ,xn]T which minimizes:

f(@ = [AE), (&), ful@)]" (2.3)
Subject to:

g:(Z) <0 i=1,2,...,m

0
hi(E)=0 j=12..p

where ¥ =[x, 2o, . . ., :Un]T is the vector of decision variables. The decision variables
can be continuous or discrete, in this work, we are only interested in continuous
domains. f; : R — R,i = 1,...,k are the objective functions and g;, h; : R® — R
are the inequality and equality constraint functions of the problem, respectively. The
set of constraints define the feasible region / C R"™. Therefore, any decision vector
Z € F is considered a feasible solution of the MOP.

Definition 5. Decision variable space: The decision variable space is the n-
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dimensional space of the decision variables, in which each coordinate axis corresponds

with one component of vector Z.

Definition 6. Objective functions: The objective functions evaluate how good
a given solution is. The objective functions are usually denoted as f; : R® — R.

In MOPs, more than one objective functions are solved and they are denoted by an

objective vector: f(Z) = [f1(Z), fo(Z), ..., fo(®)]", where f(Z) : R* — RF.
Definition 7. Objective function space: The objective function space is the
k-dimensional space of the objective functions, in which each coordinate axis corre-

—

sponds with one component of vector f(Z).

Figure 2.1 represents the above definitions for a MOP with three decision vari-
ables and two objective functions. f is a function that maps a vector ¥ € X in the

decision variable space to a vector zZ' € Z in the objective function space.

Decision variable space Objective function space

oy eRre f2 Ze Rk

\
]

8|
i/
4

=
.
v

fi
X2

Figure 2.1: Mapping between decision variables space and objective function space.

2.3.1 Optimality in multi-objective optimization

In single-objective optimization, it is possible to determine if one solution is better
than another solution by comparing their function values. Therefore, a single optimal
solution is obtained (the global optimum). On the other hand, in MOPs, the aim is

to find a set of optimal solutions which represent the best possible trade-offs among
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all the objectives. Therefore, in multi-objective optimization the definition of opti-
mality changes. The notion of optimality most commonly adopted in multi-objective
optimization is normally referred to as Pareto optimality and it was originally pro-
posed by Edgeworth in 1881 [29] and later generalized by Pareto in 1896 [74]. In the

following, some important concepts related to Pareto optimality are presented.

Definition 8. Pareto Dominance: Let f; be an objective function. Then, a
decision vector & = [z1,...,z,]T is said to dominate i = [y1,...,9,]T (denoted by
¥ < @) if and only if, fi(Z) < f;(y) for alli € {1,...,k} and fi(Z) < f;(¥) in at least

one f; (see Figure 2.2).

fZ 1

fi

Figure 2.2: Pareto dominance for a MOP with two objective functions. The solution
a < ¢ such that, a is better in f; and f5, a < d, such that a is equal to d in fy but it
is better than d in f1, b < d such that, b is equal to d in f; but it is better than d in
f2, b < e such that, b is better than e in both functions; a and b are incomparable,
therefore a and b are Pareto optimal solutions.

Definition 9. Pareto Optimality: A vector of decision variables ¥* € F is Pareto
optimal, if there does not exist other solution ¥ € F such that ©¥ < &*. If * is Pareto

—

optimal, the objective vector, f(&*), is also Pareto optimal.

The set of all the Pareto optimal decision vectors forms the Pareto optimal
set (POS) and their corresponding objective vectors form the Pareto optimal front
(POF). The POS and the POF are defined as follows:
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Definition 10. Pareto optimal set: For a given MOP, the POS (P*) is defined
as: P*={¥ e F| Bye F:y =<7}

—

Definition 11. Pareto optimal front: For the objective vector, f(Z) and the POS
(P*), the POF is defined as: PF* = {f(f)|a? € 73*}

Figure 2.3 illustrates the POS and the POF of a MOP with two decision variables

and two objective functions.

! Decision variable space f 4 Objective function space
2 2

Ze Rk

A\ 4
y

X1 fl

Figure 2.3: Illustration of the Pareto optimal set and its mapping to the Pareto
front. Black points are non-dominated solutions and they define the Pareto optimal
set in decision variable space and the Pareto front in objective space. White points
are dominated vectors and gray points are infeasible solutions.

Definition 12. Ideal objective vector: The ideal objective vector, denoted by
7 = [2,25,...,2]" is obtained by minimizing each of the objective functions indi-

vidually subject to the constraints (if any), i.e., 2z = min f;(Z) subject to ¥ € F.

Definition 13. Nadir objective vector: The components of the nadir objective

vector denoted by zm% = [ nad ,nad nad

T
270 2B 2y } are the upper bounds of the Pareto

optimal set.

In Figure 2.4 the above definitions are illustrated for a MOP with two objectives.
In general, it is not possible to find an analytical expression of the line or surface

that defines the Pareto front of a MOP. Therefore, the most common procedure to
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fz‘l Objective function space

Figure 2.4: Illustration of ideal vector z* and nadir vector 2 for a MOP with two
objective functions.

generate the Pareto front for a given MOP is to compute a sufficient number of
points within the feasible region F, and then select the non-dominated vectors from
them.

Since the size of the Pareto optimal set might be infinite, the main goal when

solving a MOP is to find an approximation of the true POF such that:
¢ The distance between the found POF and the true POF is minimized.

e The set of non-dominated solutions maintains a distribution as diverse as pos-
sible along the found POF.

2.4 Optimization methods to solve MOPs

Over the years, a large number of optimization methods for solving MOPs have
been proposed. These methods can be classified in many ways according to dif-
ferent taxonomies (for example, enumerative, deterministic and stochastic methods
[19]). Enumerative methods evaluate each possible solution within some finite search
space. Therefore, they are the simplest search strategy. It is easy to note that
enumerative methods are not suitable for large search spaces. On the other hand,

deterministic methods incorporate problem domain knowledge. Most of them are
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graph/tree search algorithms. Deterministic methods are often ineffective solving ir-
regular MOPs, i.e., when the MOP is high-dimensional, discontinuous, multimodal or
NP-hard [19]. Since many real-world MOPs are irregular, stochastic search methods
such as the Bio-inspired algorithms have been developed as alternative approaches

for solving them (this kind of methods will be described in the next chapter).

2.4.1 Mathematical programming methods to solve MOPs

As was aforementioned, in multi-objective optimization a Pareto optimal set is ob-
tained instead of a single one optimal solution. However, it is preferable to obtain
one point as a solution for the MOP. The decision maker (DM) is responsible for
choosing only one solution from all those available. The operations research com-
munity has proposed several stochastic and deterministic optimization methods to
solve MOPs. Mathematical programming methods as well as multi-criteria deci-
sion making methods, are commonly classified based on how and when the DM is
required to provide preference information. Cohon and Marks [21] proposed one of
the most popular classifications of mathematical programming techniques within the

operations research community. This classification is presented below.

e A priori methods: The DM defines the importance of the objective functions

before starting the search.

e A posteriori methods: First, the approximate Pareto front is generated by
an optimizer, and then, the DM selects the most preferred one(s) according to

her /his preferences.

o Interactive methods: Both optimizer method and DM work progressively.
The optimizer produces solutions and the DM provides preference information

so that the most preferred solutions can be found.

In the following, a brief description of the most popular Multi-Criteria Decision

Making methods according to the above classification is presented.
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A priori methods

e Goal Programming: This method was development by Charnes and Cooper
[15]. It is considered one of the first methods explicitly designed for multi-
objective optimization. In this method, the DM has to assign aspiration levels
zi(i = 1,...,k) to be achieved for each objective function. Therefore, the
objective function tries to minimize any deviations from these aspiration lev-
els to the objectives. Both, the objective function and the aspiration level
form a goal. Several variants of this method have been proposed (for exam-
ple, weighted and lexicographic approaches). The weighted approach can be

formulated as follows:
k
min Y w;|f;(Z) — Z]|, subject to: Te F (2.4)
i=1

where w; are weights previously pre-defined by the DM for the ith objective
function f;(Z), and F represents the feasible region. On the other hand, in
the lexicographic approach, the DM must specify a lexicographic order on the
goals in addition to the aspiration levels. Goal programming is a widely used
method to solve MOPs. However, one disadvantage of this method is that the
specification of the weighted coefficients or the lexicographic ordering may be
difficult. Furthermore, goal programming is not appropriate when a user wants
to obtain more than one trade-off solutions. More details about this method
can be found in [69)].

o Lexicographic Method: In this method, the DM has to rank objective func-
tions in order of importance (from best to worst). After that, the optimum
solution 7 is obtained, by minimizing the objective functions. First, the most
important objective function is minimized proceeding with the remaining ob-
jective functions according to their order of importance. In each optimization
step, the optimal solution found of each objective is added as a constraint for
subsequent optimizations. The addition of the constraint guarantees that the
most important objective function preserves its optimal value. Suppose that

f1 and f; are the most and least important objective functions, respectively.



Chapter 2.  Optimization Background 33

Then, the first problem can be formulated as follows:
Minimize: fi(Z), subject to: ¢;(Z) <0; j7=1,2,....,m (2.5)

and its solution Z7 and f; = fi(&7) is obtained. Then, the second problem is
formulated as follows:
Minimize: f5(%), (2.6)

subject to:

g;(¥)<0; j=12,....m
[i(@) = fi

and the solution obtained by this problem is @5 and f3 = f1(75). The procedure
continues until all £ objectives have been considered. For more information of

this method interested readers can be referred to [30].

A posteriori methods

o Weighting Method: This method was introduced by Gass and Saaty [36].
The aim of this method is to transform the MOP into a single-objective prob-
lem. In the weighting method, each objective function is associated with one
weighting coefficient. The goal of the method is to minimize the weighted sum
of all the objectives. The weighting coefficients w; are real numbers. Such that,
the MOP is transformed into a SOP as follows:

k
min Y w; fi(Z), subject to: Te F (2.7)
i=1

where w; > 0 for all i = 1,...,k and Y% , w; = 1. The weighting method is a
simple way to generate different Pareto optimal solutions. However, the main
disadvantage of the weighting method is that not all of the Pareto optimal
points can be found if the problem has discontinuous objective functions or it

is a nonconvex problem. More details of this method can be found in [36],[69].
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+ ¢-Constraint Method: This method was proposed by Haimes et al. [41]. The
main idea of this method consists of minimizing the most preferred objective
function at a time, considering the remaining objectives as constraints bound
by some allowable levels €;. The non-dominated solutions of the problem can

be obtained by varying these €; levels solving the next problem:

Minimize: f;(Z) (2.8)
subject to:
fi(@) <e forall j=1,... kj#1,
reF
where 1 = 1,...,k. In order to apply the e-constraint method, a preliminary

analysis is recommended to identify proper starting values for €;. Usually, a
mathematical programming technique for single-objective optimization is used
to optimize each objective function. Therefore, the e-constraint method is
very expensive because it needs to perform k optimizations for all f; objective

functions.

Interactive methods

o Tchebycheff Method: This is an interactive weighting vector space reduction
method. It was proposed by Steuer [87]. In this method, an utopian vector
below the ideal vector should be established. Then, a weighted Tchebycheft
metric is used to minimize the distance between the utopian vector and the
feasible region. Thus, different solutions are obtained with different weighting
vectors in the metric. The solution space is reduced by working with sequences
of smaller and smaller subsets of the weighting vector space. Therefore, the
main idea of the Tchebycheff Method consists in developing a sequence of
progressively smaller subsets of the Pareto optimal set until a final solution
is obtained. At each iteration, different objective vectors are presented to the
decision maker and he or she must select the most preferred one. The feasible

region is then reduced and alternatives from the reduced space are presented
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to the DM for selection.

o GUESS Method: This method was proposed by Buchannan et al. [9]. Tt

Znad gre avail-

requires that the ideal objective vector z* and the nadir vector
able. The general idea of this method consists in maximizing the minimum
weighted deviation from the nadir vector. Therefore, the decision maker needs
to specify a reference point, usually known as a guess point z*, then a solution
with equal proportional achievements is generated. After that, the decision
maker specifies a new reference point; the process continues until the decision
maker is satisfied with the solution proposed. In this method, the scales of the
objective functions are normalized. In the GUESS method, the decision maker
can examine what kind of an effect his or her input point has on the solution
obtained and then modify the input according to his or her preferences. The
main disadvantage of this method is the requirement of the nadir vector which
is not easy to determine, and usually, it is only an approximation to the true

nadir vector. For more details about this method, readers can be referred to
[69].

2.5 Summary

This chapter discussed different aspects of optimization relevant to this thesis. Sec-
tion 2.1 described optimization problems and their main features with regards to the
problem’s objective functions, decision variables and constraints. The mathemati-
cal definition of single-objective optimization problems was presented in Section 2.2.
Section 2.3 defined a multi-objective optimization problem. In order to re-defined
the optima for a MOP, the concepts of a POS and POF were presented in Section
2.3.1. Finally, in Section 2.4, some of the most popular mathematical programming
methods used to solve MOPs were discussed.

Mathematical programming methods for solving MOPs have shown to be effective
in many domains. However, they have several disadvantages. For instance, they are
sensitive to the shape of the Pareto optimal front and/or they required previous
knowledge of the problem being solved. In addition, mathematical programming

methods have in common that they need to perform several independent runs to
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obtain an approximation of the Pareto optimal set.
Evolutionary Algorithms (EAs) have been found to offer several advantages in
comparison with traditional programming methods solving MOPs. The next chapter

discusses some of these advantages and presents a review of some of the most popular

EAs in the context of the solution of MOPs.



Chapter 3

Multi-Objective Evolutionary
Algorithms

Classical multi-objective programming methods are only some of the optimization
methods used to solve MOPs. However, they have some disadvantages. Some of

them are the following:

e Since those algorithms restate a MOP into a SOP, only one Pareto optimal
solution can be found. Therefore, if the user is interested in finding multiple
Pareto-optimal solutions, it is necessary to run those algorithms many times.
Thus, in order to find N solutions, at least N single-objective optimization

problems need to be solved.

o For some MOPs, classical methods can not be applicable or may have poor
performance, for example, problems in which the objective functions are non-
differentiable.

e Many of them are sensitive to the shape or continuity of the Pareto front.

e Most classical algorithms require some knowledge about the problem to be

solved.

Such disadvantages have motivated the use of alternative approaches to tackle
different kinds of MOPs. Among those approaches, Evolutionary Algorithms (EAs)

have become a popular alternative to classical optimization methods.

37
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EAs are stochastic search and optimization methods inspired by the natural
evolution process. They are techniques that operate on a set of solutions (population
of solutions). At each iteration, EAs implement a selection mechanism to choose the
best solutions and perform a reproduction process to generate new solutions.

In 1967, Rosenberg [81] introduced the use of genetic algorithms to solve MOPs.
However, it was until 1984, when Schaffer [82] proposed the first implementation of
what it is now called a Multi-objective Evolutionary Algorithm (MOEA). After that,
different MOEAs have been proposed and applied to several optimization problems
[24, 49, 57, 101, 111]. Some of the major advantages of MOEAs, as compared to
other methods, are that they require little problem specific knowledge and they are
not very susceptible to the shape or continuity of the Pareto front. In addition,
MOEAs are easy to implement and use, and they can generate several elements of
the Pareto optimal set in a single run.

According to different authors, finding an approximate Pareto front is, by itself,

a bi-objective problem whose objectives are [20, 111]:

e Minimize the distance of the generated solutions to the POF, and

o Maximize the diversity among the solutions in the obtained POF as much as

possible.

Single objective EAs and MOEAs share a similar structure. However, since
MOEAs deal with more than one objective at the same time, MOEAs must use
a fitness assignment mechanism which considers the two objectives presented above.
MOEAs can be classified in several ways [20]. However, for the purposes of this the-
sis, a simple high-level classification based on their selection mechanism is adopted.

In the following, some of the most popular MOEAs are presented.

3.1 MOEAs based on Pareto

o Multiple Objective Genetic Algorithm (MOGA): This algorithm was
proposed in 1993 by Fonseca and Fleming [34]. It is based on the ranking
scheme proposed by Goldberg [39]. In such ranking scheme, first, all individuals

in the population are ranked based on non-dominance. Thus, the rank of an
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individual x at generation t is equal to the number of individuals by which it is
dominated plus one, i.e. rank(z,t) = 1+p(z,t), where p(x,t) is the number of
individuals that dominate individual = in the objective space. After the ranking
scheme, the fitness of all individuals is computed. In this algorithm, in order to
obtain a good distribution of solutions along the Pareto front, fitness sharing
is implemented. The sharing mechanism used by MOGA calculates its value
depending on the current maximum and minimum values of the objectives and

the population size.

« Non-dominated Sorting Genetic Algorithm (NSGA): In this algorithm
the ranking scheme proposed by Goldberg is also implemented but in a more
straightforward way. The NSGA algorithm was proposed by Srinivas and
Deb [86]. It ranks the population in different layers or fronts based on non-
dominance. Thus, before applying the selection mechanism, the population
is ranked. In such ranking scheme, the first front is composed by the non-
dominated individuals of the current population. The second front, is com-
posed by the non-dominated individuals excluding individuals in the first rank.
Therefore, each front is computed ignoring the individuals that have already
been ranked. The ranking scheme continues until all individuals in the pop-
ulation are ranked. Since individuals in the first front are the best ranked
individuals, they have a higher selection probability than the rest of the pop-

ulation.

o Non-dominated Sorting Genetic Algorithm-IT (NSGA-II): This algo-
rithm was proposed by Deb et al. [24] and it is an improved version of the
NSGA algorithm. In the NSGA-II, individuals of the current population are
ranked and sorted according to its non-domination level. After that, NSGA-II
applies evolutionary operators to create an offspring pool. Once the offspring
has been created, the parents and offspring are combined to create a new pop-
ulation. After that, the Pareto-ranking is performed on the new population,
i.e. the combined population is sorted according to the individuals’ level of
non-domination. For each ranking level, the sum of the Euclidean distances be-
tween the two neighboring solutions from either side of the solution along each

of the objectives is computing. This value is the so-called crowding distance
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f2

Figure 3.1: Representation of Crowding Distance.

(see Figure 3.1). During selection, the NSGA-II uses a crowded-comparison
operator which guides the selection process toward to a uniformly spread-out
Pareto-optimal set. Such crowded-comparison operator takes into considera-
tion both the non-domination rank of an individual in the population and its
crowding distance. Between two solutions with different non-domination rank,
the solution with the lower (better) rank is preferred. Otherwise, if both solu-
tions belong to the same front, then the one that resides in the less crowded
region is preferred. Since the NSGA-II uses an elitist mechanism that consists
in combining the best parents with the best offspring obtained i.e., a (u + \)-
selection, it does not use an external memory as other MOEAs. In the last
few years, the NSGA-II algorithm has been the most popular MOEA | and it is
commonly adopted to compare the performance of newly introduced MOEAs.

In Figure 3.2 the general behavior of the NSGA-II algorithm is presented.

Strength Pareto Evolutionary Algorithm (SPEA): The SPEA algorithm
was introduced by Zitzler and Thiele [111]. This MOEA uses a secondary pop-
ulation (an external archive, the so-called external non-dominated set) con-
taining non-dominated solutions previously found. At each iteration, non-
dominated solutions are copied to the external non-dominated set, removing
the dominated solutions. In SPEA, the fitness of each individual in the pri-

mary population is computed by using the individuals of the external archive.
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Figure 3.2: General procedure of NSGA-II algorithm.

First, a strength value is calculated for each individual in the external set. This
strength value is similar to the ranking value of MOGA [34]. After that, the
fitness of each individual in the primary population is computed as the sum of
the strengths of all the external non-dominated solutions that dominate it. In
SPEA, the fitness assignment considers both, closeness to the true Pareto front
and even distribution of solutions at the same time. On the other hand, SPEA
uses a clustering technique called average linkage method [70] maintaining the
size of the external non-dominated set below a certain threshold to avoid that

its size grows too large.

« Strength Pareto Evolutionary Algorithm 2 (SPEA2): This MOEA is
an improved version of SPEA algorithm proposed by Zitzler et al. [108]. Tt has
three main differences with respect to the SPEA previously described: (1) it has
a fine-grained fitness assignment strategy which takes into consideration, for
each individual, the number of individuals that dominate it and the number
of individuals to which it dominates; (2) it uses an adaptation of the k-th
nearest neighbor method, the so-called nearest neighbor density estimation
technique, which guides the search more efficiently, and (3) it incorporates
an enhanced archive truncation method that guarantees the preservation of

boundary solutions.

o Generalized Differential Evolution (GDE3): This algorithm was pro-
posed by Kukkonen et al. [57] as an extension of Differential Evolution algo-
rithm to solve MOPs with constraints. Since GDE3 is the MOEA algorithm
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used as a basis in our proposed approach, in this section a detailed description
of such algorithm is presented. First, a brief description of DE is presented,
followed by the detailed description of GDES3.

Differential Evolution (DE) is an evolutionary algorithm with a mechanism
to generate multiple search directions based on the distribution of solutions
(vectors) in the current population [68]. The population of solutions in DE
is represented as: x;g,t = 1,..., NP, where z; represents one vector 7 at

generation G, NP is the population size.

There are different DE variants which are distinguished by the way of gener-
ating new vectors. The most popular of them is called DE/rand/1/bin, where
“rand” means the criterion to choose the base vector, “1” refers to the number
of vector differences to be computed, and “bin” is the type of the crossover
operator, in this case, binomial crossover [75]. This DE variant is described

below.

At the moment of reproduction, each vector in the population called target
vector or parent vector, T; ¢, generates one offspring, trial vector i, ¢, using a

vector called mutant as follows:

First, a search direction is defined by calculating a difference vector between a
pair of vectors chosen randomly from the current population 7, ¢ and @, ¢.
This difference vector is scaled using a user-defined parameter called scale
factor F > 0 [75]. After that, this scaled vector is added to a third vector
(called base vector) Z,, ¢ chosen randomly as well. The three vectors used
for this operation are different from each other and different from the target.
The result of these operations is a new vector known as mutant vector v; ¢

(mutation operation) as shown in Equation 3.1.

Uig =Ty + F(Zr 6 — Try ) (3.1)

After the mutant vector is generated, it will be recombined with the target
vector, based on another user-defined parameter called crossover probability
0 < CR < 1, to generate a trial (child) vector. CR defines the similarity

between the mutant and trial vector (Equation 3.2)
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Vi if(rand;, < CR) or = Jran
o [pac iGrand ) o G

xijc otherwise
In Equation 3.2, rand; generates a random real number with uniform distribu-
tion between 0 and 1, j € 1,..., D is the j — th variable of the D-dimensional

vector and J.qng € [1, D] is a random integer which prevents a target vector

copy as its trial.

To finish the evolutionary process, the best vector between the target and trial,
considering the objective function value and assuming minimization, is chosen

to remain in the population for the next generation according to Equation 3.3:

ros fme iU < s, .

x;c otherwise
A graphical example of the variant described above is shown in Fig. 3.3.
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Figure 3.3: DE/rand/1/bin graphical example [68].

Regarding GDE3 algorithm, different previous versions of GDE have been pro-

posed in [59] and [58]. The first one was an expansion of DE to deal with con-
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strained multi-objective problems. Its basic idea was only the modification of
the selection rule of the basic DE. Crowding distance and non-dominated con-
cepts were introduced in the second version. Finally, the last version (adopted
in our proposed approach), is an improved version of the two previous GDE
approaches to solve problems with M objectives and K constraints functions.
Therefore, it handles any number of M objectives and any number of K con-
straints, including the cases where M = 0 (constraint satisfaction problem)
and K = 0 (unconstrained problem). One main characteristic in GDE3 is the

selection mechanism used, which is based on the following criteria:

— Between two infeasible vectors, the trial vector is selected if it dominates

the target in constraint violation space, otherwise the target is selected.

— Between one feasible vector and one infeasible vector, the feasible vector

is selected.

— Between two feasible vectors, the trial is selected if it dominates the target.
If the target dominates the trial vector, then the target is selected. If
neither vector dominates each other, both vectors are temporarily selected

for the next generation.

When two non-dominated feasible vectors are chosen to survive, the popula-
tion size might grow through generations. When this occurs, it is necessary
to reduce the population to its original size. For such purpose, the algorithm
uses the same selection mechanism of NSGA-II, which consists in truncating
the population based on crowding distance (C'D) and non-dominance criteria.
This allows the best members of the population to remain for the next genera-
tion, and the worst members are removed to decrease the size of the population
to the original size. The non-dominated sorting is modified as well, to han-
dle constraints, and the selection based on crowding distance is improved to
provide a better distribution of solutions. In the original selection mechanism,
for selecting n solutions out of N (current population), the solutions are first
sorted according to objective values. Then crowding distances (C'Ds) are calcu-
lated. Finally, solutions are sorted according to the crowding distance values.

However, there are cases where this approach does not provide good results



Chapter 3.  Multi-Objective Evolutionary Algorithms 45

[56]. Therefore, to deal with this problem, instead of selecting n solutions with
the largest crowding distance values, the selection mechanism implemented in
GDES3 first calculates C'Ds of every solution (n) of the non-dominated set.
After that, N — n solutions with the smallest crowding distance values are
removed one by one. Removing these solutions from the front, crowding val-
ues from the remaining solutions change and these values are updated every
time solutions are eliminated. Algorithm 1 shows the pseudocode of the GDE3

selection mechanism.

Algorithm 1 Pseudocode of the Selection mechanism of GDE3 [56]

10:

11:
12:
13:

Input: a non-dominated set S, the size n of a desired pruned set
Output: elements of a heap H
for i =1 to |S| do

Chose a member x; € S and calculate it CD value;

Create a data structure D containing information about neighbors on either side
of the member x; along each objective;
end for
Using CDs values as ordering key, create an ascending heap H from the members of S}
while |H|>n do

Remove a solution x; with a minimum C'D value from H and update H;

Update D with the correct neighbor information for the neighbors of the removed
element;

V neighbors of the removed element: calculate a new C'D;

Replace old C'D value in H with the new one and update H;
end while

In unconstrained single objective problems, GDE3 performs equal to the orig-

inal DE. The general pseudocode of GDE3 is shown in Algorithm 2.

3.2 MOEAs based on decomposition

o Multi-objective Evolutionary Algorithm based on Decomposition (
MOEA /D): This algorithm was proposed by Zhang and Li [101]. It is well-
known that a Pareto optimal solution to a MOP, under certain conditions,
could be an optimal solution of a scalar optimization problem in which the
objective is an aggregation of all the objective functions. Therefore, an ap-

proximation of the Pareto optimal front can be decomposed into a number of
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Algorithm 2 General pseudocode of GDE3 algorithm [57]

1: Input: D, Gz, NP, CR, F, and initial bounds z(©), — z(h9)

2: Initialize population z; ol = {1,2,,...,NP},j={1,2,,...,D},G =0,m = 0;
3: Evaluate the initial population;

4: for G=1 to Gyper do

5 for i=1to NP do

6: Choose rg # 11 # ro # ¢ from current population P;

7 Generate jrqng = radint(1, D);

8: for j=1to D do

9 if j= jrana or rand;[0,1) < CR then

10: ujic = Tjr0.c+F - (Zjr,c — Zjr2,c) Mutation operator;
11: else

12: Uji,G = Tj,i,G;

13: end if

14: end for

15: if ﬁi,G jc f’i,G then

16: Tigr1 = UiG;

17: else

18: TiGa1 = Tias

19: end if

20: if Vj t gj (2_[1‘,0) <O0A fi,G—&-l == l_"@G VAN :L_:i,G A ﬁi,G then
21: m=m+ 1

22: INPrm,G+1 = Ui G;

23: end if

24: end for
25: while m > 0 do

26: Select ¥ € {fLGJrl, .7_3’27641, ... 7fNP+m,G+1} :
ViZA TiG41
A
V(ZTigy1: Tigr1AoL)  OD(F) < OD(%641)
27: Remove Z;
28: m=m — 1,

29: end while
30: end for
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scalar optimization subproblems. This is the basic idea behind many tradi-
tional mathematical programming methods (see Chapter 2 of this document).
The same idea is adopted by MOEA /D, i.e., it decomposes the MOP into a
number of scalar objective optimization subproblems (SOPs). In the evolution
process, neighborhood relations among these subproblems are defined based
on the distances between their aggregation weight vectors. Subproblem i is a
neighbor of subproblem j if the weight vector of subproblem i is close to that
of subproblem j. MOEA/D optimizes these subproblems using information
only from its neighboring subproblems. In MOEA/D an external archive is
also used to store the non-dominated solutions found during the search. In a
simple version of MOEA /D, each subproblem keeps one solution in its mem-
ory, which could be the best solution found so far for the subproblem. A new
solution is generated by applying genetic operators among pairs of solutions
from its neighboring subproblems, after that, MOEA /D updates its memory if
the new solution is better than the old one for the subproblem. One advantage
of MOEA/D different from NSGA-IT and SPEA2 algorithms is that MOEA /D
uses the well-distributed set of weight vectors for guiding the search. There-
fore, the diversity of the population in MOEA /D is implicitly maintained. In
contrast, NSGA-II and SPEA2 use density estimators, crowding distance and

neighboring solutions, respectively.

3.3 Indicator-based MOEAs

Since a MOP can be solved using different MOEAs, different approximations to
the Pareto-optimal set can be found. Therefore, several performance measures have
been proposed to evaluate and compare the outcome sets of MOEAs. In this sense,
more recently designed MOEAs have considered the use of performance measures or
indicators to guide the search during the evolution process [7, 31, 110]. The main
motivation for the design of MOEAs based on indicators has been to overcome the
poor performance of the Pareto-based selection schemes when dealing with MOPs
having more than three objectives [54]. Such indicators can be incorporated into a

MOEA in different ways: (1) as an archiving algorithm, (2) as a selection mechanism,
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and (3) as a set preference relation. However, for the purposes of this thesis, we are
only focussed on MOEAs that incorporate the indicators as a selection mechanism.
Here we refer to this type of MOEAs as Indicator-based MOEAs. In the following,
a brief description of the most popular Indicator-based MOEAS is presented.

o Indicator-Based Evolutionary Algorithm (IBEA): This algorithm was
proposed by Zitzler and Kiunzli [110]. The main idea of IBEA is to first define
the optimization goal in terms of a binary performance metric and then use
the metric in the selection process. Since IBEA is considered as a general
framework of Indicator-based MOEA, any binary metric can be used in the
fitness assignment function. IBEA assigns the fitness of each individual in
the population using: f(Z) = Xjep\ (2 —e I@FAGN/k where P is the current
population, #, ¢ € P, I({Z},{y}) represents the binary quality indicator, and
k is the scalar factor which is defined by the user and depends on the problem

being solved.

In general, IBEA performs binary tournaments for mating selection and im-
plements environmental selection by iterative removing the worst individuals
from the current population, in terms of the selected binary quality indicator.
When the worst individual is eliminated, IBEA updates the fitness values of
the remaining individuals with: f(Z) = f(Z) + e /{&HZ/k | where ' is the

eliminated individual.

o S-metric Selection-Evolutionary Multi-Objective Algorithm (SMS-
EMOA): This algorithm was originally proposed by Emmerich et al. [31]. In
this algorithm, the hypervolume (or S-metric) contribution is used in the envi-
ronmental selection process. SMS-EMOA creates an initial population, then,
only one solution by iteration is created using the operators (crossover and
mutation) of the NSGA-II algorithm and inserted into the current population.
After that, SMS-EMOA applies Pareto ranking. Then, for each solution in the
current population, its contribution to the hypervolume is computed. Since
the maximization of the hypervolume metric attains both, convergence to the
Pareto-optimal front and a good distribution of solutions along the Pareto-front

approximation, the solution with the less contribution to the HV metric is then
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discarded. At the beginning of the evolutionary process, some solutions in the
current population can be dominated and, therefore, they do not contribute
to the hypervolume metric of the Pareto-front approximation. In such cases,
Beume et al. [7] proposed that the SMS-EMOA algorithm computes the hy-
pervolume contribution for each rank layer of solutions in the Pareto-ranking.
Therefore, the discarded solution will be selected as the less contributing in

the hypervolume metric but in the highest rank layer.

e Hypervolume Estimation Algorithm for Multi-objective optimiza-
tion (HypE): HypE is another novel HV-based MOEA that can be used for
solving MOPs with an arbitrary number of objectives. It was proposed by
Bader et al. [6]. In HypE, to reduce the computational cost of HV calcula-
tions, instead of calculating the exact HV values, the Monte Carlo simulation
has been adopted to estimate the approximate HV values. In the environ-
mental selection of HypE, the non-dominated sorting is used to divide the
population into several fronts, after that, the solutions on the last front are

distinguished by their contributions to the HV values of the population.

3.4 Other meta-heuristics

There exist other multi-objective meta-heuristics that have been proposed. Next,

some of them are briefly described:

« Particle Swarm Optimization (PSO): The PSO algorithm was proposed
by Kennedy and Eberhart [53]. This algorithm is inspired by the choreogra-
phy of bird flocks. The implementation of the algorithm adopts a population
of individuals called particles. During the optimization process, the behavior
of each individual is affected by either the best local (i.e., within a certain
neighborhood) or the best global individual. Different from traditional evo-
lutionary algorithms, in order to accelerate converge, PSO introduces the use
of an operator that sets the velocity of a particle to a particular direction.
This can be seen as a directional mutation operator. Another difference is that

PSO allows individuals to benefit from their past experiences. PSO algorithm
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has been successfully used for both continuous nonlinear and discrete binary
optimization [32]. Since the high speed of convergence that PSO presents
solving single-objective optimization problems, it has also been extended for
multi-objective optimization. To deal with MOPs, normally, mechanisms very
similar to those adopted with MOEAs (namely, Pareto ranking scheme, mu-
tation operators and external archives) have been adopted in multi-objective
particle swarm optimizers (MOPSOs). Several multi-objective versions of PSO

have been proposed (see for example [79]).

o Artificial Immune Systems (AIS): The AIS are computational paradigms
inspired by the biological immune system [14]. Therefore, they belong to the
nature-inspired meta-heuristics. One of the main goals of the immune sys-
tem consists essentially of a process where different cells interact each other to
protect the organisms from intruding pathogens or bacteria (antigens). The
immune system is capable of distinguishing between normal and foreign com-
ponents in the organism. Cells that are recognized as foreign material are

known as antigens.

The most popular paradigm of the immune system that attempts to explain
the process whereby the antigens are eliminated is called Clonal Selection Prin-
ciple [14]. In Clonal Selection, the molecules called antibodies play an impor-
tant role, when an antigen is detected, the antibodies that best recognize an
antigen will proliferate by cloning. The new cloned cells experiment an hy-
permutation process, according to the affinity to the antigen, antibodies with
highest affinity experiment lowest mutation and antibodies with the lowest
affinity have high mutation rates. The hypermutation process in the immune
response is important because it allows the creation of new antibodies and
maintains the diversity. Once these clonation and hypermutation processes
finish, the immune system has improved the antibodies’ affinity, which results
on the antigen neutralization and elimination. Finally, the immune system
needs to return to its normal condition, eliminating the excess cells. However,
there are cells, called memory cells, which can be activated when the organism
is later attacked by a similar type of antigen, and these cells present a better

efficient response [14].
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In the same way of PSO, AIS have also been extended for solving MOPs.
Thus, very similar mechanisms to those adopted by MOEAs have been used
to proposed multi-objective optimization algorithms inspired on the artificial
immune system (MOAIS). The first multi-objective optimization algorithm
inspired on the AIS was called MISA (Multi-objective Immune System Algo-
rithm) proposed by Cruz and Coello [18]. In MISA the Pareto ranking scheme
was used to deal with MOPs and the authors attempted to follow the clonal
selection principle very closely, then the performance of MISA was improved
in a successive version [22]. After the proposal of MISA, several MOAIS have
been proposed (see for example [12] and [35]), and this remains as a very active

research area.

3.5 Performance assessment of MOEAs

In multi-objective optimization, the comparison of the performance of different MOEAs
is an important issue. Different from single-objective optimization, where the qual-
ity of a solution can be defined using the objective function values: the smaller
(to minimize) or the larger (to maximize) value corresponds to a better solution,
in multi-objective optimization, other aspects should be considered to evaluate the
performance of MOEAs.

As pointed before, MOEAs should be designed to satisfy the two main goals of
multi-objective optimization: (1) minimize the distance of the approximated POF
produced to the true POF, and (2) maximize the diversity among the solutions in the
Pareto front approximation as much as possible. Therefore, to assess the performance
of the MOEAs, several performance measures have been proposed which considered
the two above issues. In the following, the performance measures which are referred
to in this thesis are briefly described. In such definitions, we considered POF as the

optimal Pareto front and POF* as an approximate Pareto front.

« Inverted Generational Distance (IGD) [77]: IGD metric measures both
diversity and convergence of found solutions by an algorithm [99], [103], [51].
Hence, if the diversity of an algorithm is not good, then its IGD value can be
affected. The IGD is computed as in Equation 3.4:
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no e
IGD = Y==L (3.4)
n

where n is the number of uniformly distributed points in the POF and d;
is the Fuclidean distance between the ith solution member in the POF and
its nearest member in the approximated Pareto front (POF*) obtained by an
algorithm. A value of IGD = 0 is preferred because a low value indicates that
the solutions generated by an algorithm are very close and cannot miss any
part of the whole POF. Therefore, any other value will indicate how “far” an
algorithm is from the POF in a given test problem. In the case of IGD, the
POF is used as a reference, and each one of its elements is compared with
respect to the POF*,

o Hypervolume (HV): This performance measure was originally proposed by
Zitzler and Thiele in [93]. It quantifies both convergence and spread of non-
dominated solution along the POF. Let POF* be a Pareto front approximation
obtained by an algorithm and a reference point in objective space z,.f, the
hypervolume indicator measures the space covered by the set of solutions @y
of the POF* in the objective space. The hypervolume corresponds to the non-
overlapping volume of all the hypercubes formed by the reference point z,.; and
each solution in the POF*. The hypervolume measure of POF* is calculated

as indicated in Equation 6.4:

Q
HV = | {vol;lvec; € POF*} (3.5)

i=1
where vec; is a non-dominated vector from POF*, and vol; is the volume for
the hypercube formed by the reference point and the non-dominated vector

vec;.

For static multi-objective optimization problems, a high HV value, indicates
that the approximation is close to the POF and has good spread towards the
extreme portions of the POF.

» Spacing (S): The spacing metric was introduced by Schott [83]. It measures
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how evenly the solutions obtained by an algorithm approaximation (POF*) are
distributed in the objective space, and it is calculated as indicated in Equation
3.6.

S_J ! i(Di—D)Q (3.6)

D; (3.7)

— 1
D=-
ni4

n

(2

where D; is the Euclidean distance between the ith member in POF* and any
other solution in POF*, and D is the average of all D; values. If S = 0, the

non-dominated solutions of POF* are uniformly spread or spaced [25].

o Maximum Spread (MS): The maximum spread performance metric, first
introduced by Zitzler [113], measures to what extent the extreme solutions in
POF* have been reached. Goh and Tan [37] proposed a modified version of
MS which measures how much the obtained POF* covers the Pareto optimal
front (POF), and it is calculated as indicated in Equation 3.8

win [POF, POFY] - max [POFy, POF] ]’
POF; - POF;

1 M
MS= |=> (3.8)
M k=1

where POF), and POF), are the maximum and minimum values of the kth

objective in POF, respectively. POF} and POF, are the maximum and mini-
mum values of the kth objective in POF*. Larger values of MS indicate a good

spread of POF*, and MS will have a value equal to one when POF* covers the
whole POF.

o Two-set Coverage (C-Metric): The Two-set-coverage metric was intro-
duced by Ziztler et al. [111]. It is a binary performance metric which esti-
mates the coverage proportion, in terms of percentage of dominated solutions,
between two POF*. Given two approximate Pareto fronts POF*, X’ and X",
both containing only feasible non-dominated solutions, the C-Metric is formally

defined as indicated in Equation 3.9.
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e X" dd € X': dJd=d}
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C X/ X// — |{a
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(3.9)

Where X’ and X" are POF* obtained by different algorithms, If all the points
in X’ dominate or are equal to all points in X", then by definition C = 1, C
= 0 otherwise. Therefore, the C-metric value means the portion of solutions
in X” being dominated by any solution in X’. Note that the domination
operator is not a symmetric operator, i.e. C'(X’, X”) it is not necessarily equal
to 1 — C(X"”, X’). Therefore, if many algorithms are compared against each
other, the C-metric needs to be evaluated in both directions of the different

POF* approximations for each possible combination of algorithms.

3.6 Summary

This chapter provided a brief summary of the most popular multi-objective evolu-
tionary algorithms. Also, a classification of MOEAs based on their selection mecha-
nism was presented. In Section 3.1, different MOEAs based on Pareto ranking were
described, including the GDE3 algorithm which is a basis of the dynamic MOEA
proposed in this thesis. The MOEA /D algorithm was presented in Section 3.2. Sec-
tion 3.3 discussed indicator-based MOEAs. Section 3.4 provided information about
other nature-inspired algorithms, namely PSO and AIS, which are required as back-
ground for later chapters in the thesis. Finally, different performance metrics for
performance assessment of MOEAs were described in Section 3.5.

Since real-world optimization problems are not static in nature and change over
time, the next chapter introduces both, dynamic single-objective optimization prob-
lems and dynamic multi-objective optimization problems. Furthermore, the state-

of-the-art regarding dynamic multi-objective evolutionary algorithms is provided.



Chapter 4

Dynamic Evolutionary

Multi-Objective Optimization

In many real-world situations, an optimization problem may present changes in the
objective function(s) and/or constraints. Such changes, lead to a change in the
search landscape and/or in the feasible space. Therefore, the optima of the problem
can change in position or value, or the optima can disappear while a new optimum
appears. These kinds of problems are usually known as dynamic optimization prob-
lems. According to the number of objectives to be optimized, dynamic optimization
problems can also be classified into dynamic single-objective optimization problems

(DSOPs) and dynamic multi-objective optimization problems (DMOPs).

4.1 Dynamic Single-Objective Optimization Prob-

lem

Mathematically, a DSOP can be formulated as follows:

Definition 14. Dynamic single-objective optimization problem: Find ¥ =
[x1, 29, ..., xn]T which minimizes:

f(&,1) (4.1)

55
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subject to:

where 7 is the vector of decision variables and ¢ represents the time step.

Since the optima change over time, the goal of a dynamic optimization algorithm

is to find the optimum z* and track its trajectory as soon as possible.

4.2 Dynamic Multi-objective Optimization

Real-world optimization problems may have more than one objective, and they can
present environmental changes. This kind of problems are usually known as dynamic
multi-objective optimization problems (DMOPs). Since solving DMOPs is a funda-
mental part of our research interest, in this section, the theory and definitions with

regards to DMOPs are presented.

Definition 15. Dynamic multi-objective optimization problem: Mathemat-
ically, a DMOP can be formulated as follows [77]:

Minimize:
f(f7t>:[fl<f7t)7f2(f7t>77fk(fvt)}T (42)
subject to:
gi(7,t) <0 i=1,2,....,m
hj<f,t):0 j:1,2,...,p

where ¥ is the vector of decision variables, f is the set of objective functions to be
minimized with respect to the variable time %, ¢ is the discrete time instance defined
as t = (1/ny) [(7/7)], where n;, 7, and 7 represent the severity of change, the
frequency of change, and the iteration counter, respectively. The functions ¢ and
h, represent the set of constraints, which define the feasible region F of the feasible

space solutions that change with respect to the time t.
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Definition 16. Frequency of change 7,: In a time-dependent problem, the fre-
quency of change determines how often the environment changes. Usually, it is
measured as the number of generations or the number of fitness functions evalua-

tions from one landscape change to the next [80].

Definition 17. Severity of change n;: The severity of change means how funda-
mental the changes are in terms of their magnitude, i.e., it measures the difference

of the landscape change by comparing the landscape before and after a change [80].

When solving DMOPs, the change frequency and change severity parameters con-
trol the changes in the environment. The change frequency and severity analysis are
important tasks in DMO, because they allow evaluating the performance of Dynamic
Multi-objective Evolutionary Algorithms (DMOEAs) for a specific type of environ-
ment, i.e., whether a DMOEA performs well in fast-changing environments, slow-
changing environments, or both; gradually changing environment, severely changing

environment, or a combination of these listed environment types [47].

4.2.1 Dynamic environment types
Based on the relation between the POF and the POS, Farina et al. [33] classified

the dynamic environments for DMOPs in four types:

o Type I: The POS changes, whereas the POF (optimal objective values) does

not change.
o Type II: Both POS and POF change.
o Type III: POS does not change, whereas POF changes.

e Type IV: Both POS and POF remain unchanged with time, but other changes

in the problem definition induce dynamicity.

These four environment types are summarized in Table 4.1
In this work, DMOPs with the first three types of changes indicated above,
without constraints, were considered for our research. When a change occurs in the

environment, the POF can change over time in different ways [33]:
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Table 4.1: Dynamic environment types

POS
No change | Change
No change | Type IV Type 1
Change Type III Type 11

POF

« Existing solutions in the POF becomes dominated and therefore are not part
of the POF any more.

o The shape of the POF can change over time from convex to nonconvex and/or
viceversa. The shape of the POF changes from a continuous front to a discon-

nected front. These kind of changes are common with either type II or type

IIT DMOPs.

e The shape of the POF remains the same, but its location in the objective space

changes over time. This kind of change occurs with type I DMOPs.

e The density of the solutions in the POF changes over time. This kind of change
can occur in all types of DMOPs.

4.3 Dynamic Multi-objective Optimization using

Evolutionary Algorithms

As mentioned previously, DMOPs are optimization problems with multiple objectives
with at least one objective changing over time. In the same way of multi-objective
optimization, the objectives in a DMOP are in conflict with one another. Therefore,
a DMOP has a set of trade-off solutions called the POF. The main difficulty in
dynamic multi-objective optimization is that the POF of a DMOP may change when
the environment changes. Therefore, the search then requires a fast convergence in
the current problem conditions and also quick responses after changes. In this way,
in order to solve a DMOP, an optimization algorithm must be able to track the

changing POF over time, apart from convergence and diversity.
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In dynamic multi-objective optimization, as in dynamic single-objective optimiza-
tion, it is important to maintain diversity in the population in order to improve the
process of tracking the moving optima. For this reason, several mechanisms have
been proposed to keep diversity in the population. Diversity can be either increased
after a change or maintained throughout the run. Aside from diversity approaches,
other approaches have been proposed to solve DMOPs, such as multiple population
approaches, prediction-based approaches, memory-based approaches, etc. In this
section, a review of some of the most popular EAs proposed to solve DMOPs is

provided.

4.3.1 Diversity-based approaches

Convergence in dynamic multi-objective optimization could lead to different prob-
lems. One of them is that, when optimization algorithms have already converged
to a particular area in the problem landscape, it could be difficult to find the new
POF since convergence during the run promotes a lack of diversity. One way to
overcome this problem is introducing diversity after detecting a change. Another
way is to maintain a good diversity level over the search process. Some of the most
widely used techniques to introduced or maintain diversity are: (a) hyper mutate
the previous population, (b) reuse the previous population or the non-dominated so-
lutions from the previous populations, (¢) randomly generate new solutions (random
immigrant), and (d) apply different crossover and mutation operators [107].

Diversity introduction approaches may not be effective when the problem changes
are severe, fast or random. On the other hand, maintaining diversity could perform
well when DMOPs have slow changes since it provides time for the optimization
algorithm to converge. However, it might not be effective when the DMOP has only
small changes [77].

One of the most important dynamic multi-objective evolutionary algorithm be-
longing to this kind of approaches is the so-called Dynamic NSGA-II (DNSGA-II)
proposed by Deb [27]. To propose DNSGA-II Deb et al. extended the well-known
multi-objective optimization algorithm NSGA-II to handle DMOPs. One of the
modifications in the original algorithm is adding a way to detect problem changes by

randomly re-evaluating 10% of the individuals in the population for each generation.
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If there is a change in the objectives or constraint violation values, the problem is
considered to be changed. Two dynamic versions of the proposed DNSGA-II called
DNSGAII-A and DNSGAII-B were proposed. Their main difference is only the way
of generating the initial population after a change. In the first case, the population is
reinitialized while in the second the population is mutated depending on the type of
change in the environment. The two versions were tested on a two-objective dynamic

problem and applied to the problem of dynamic hydrothermal power scheduling.

More recently, Zeng et al. [100], proposed a dynamic orthogonal multi-objective
evolutionary algorithm called DOMOEA. This approach selects randomly between
a linear crossover operator and an orthogonal crossover operator. The linear oper-
ator is employed as a diversity maintenance scheme and the orthogonal operator is
used to enhance the fitness of the population while the problem remains stabilized
between changes. The weakness of this algorithm is that it is used mainly when the

environment change occurs with a low frequency.

Based on AIS ideas, Shang et al. [84], proposed a clonal selection algorithm for
DMOPs called CSADMO (Clonal Selection Algorithm for Dynamic Multi-objective
Optimization). CSADMO uses clonal selection, a self-adaptive dynamic process of
the immune system. A non-uniform mutation operator and the crowding distance

measure are used by CSADMO to increase the diversity in the population.

In [95], Wang et al. introduced an adaptive immigration scheme which is then
integrated to the differential evolution algorithm. The immigration strategy can
be divided into correlated immigration, uncorrelated immigration and hybrid im-
migration. In the correlated immigration, the immigrants are generated from the
previous solutions. However, for uncorrelated immigration, the immigrants are gen-
erated randomly. In the immigration scheme used by the authors, the immigrants
are generated by both the correlated immigration and the uncorrelated immigration,

so that it is called hybrid immigration.

Another way to maintain diversity consists in using diversity as an additional
objective function [10]. In [16], Chen et al. proposed the Individual Diversity Multi-
objective Optimization EA (IDMOEA) to explicitly maintain genetic diversity by
considering it as an additional objective in the optimization process. The algorithm

uses a new diversity preserving evaluation method which is called Individual Diversity
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Evolutionary Method (IDEM). The goal of IDEM is to add a useful selection pressure
addressed towards both, the optimal POS and the diversity maintenance.

Based on swarm intelligence, Diaz-Manriquez et al. [65], proposed the DPSO
(Dynamic Particle Swarm Optimization) algorithm. It incorporates a hyperplane
distribution and Pareto dominance to solve DMOPs. When a change is detected,
DPSO reinitializes (in different ways) the velocity parameter of PSO and the file

where non-dominated solutions are stored.

4.3.2 Multi-population approaches

In multiple population approaches, to detect changes or new optimal solutions, differ-
ent parts of the search space are simultaneously explored by different subpopulations.
For instance, one population can be in charge of the current solutions while another
population would explore different regions. In this kind of approaches, different
tasks should be assigned to each subpopulation and the subpopulations should not
converge to the same location in the search space. Multiple population approaches
have the advantage of being able to track multiple optima, recall previous optima,
effective in solving multi-modal problems and can adequately adapt whenever the
problem changes. However, one disadvantage of this kind of approaches is that the
number of sub-population could affect the performance of the optimization algorithm
[77].

In [38], Goh and Tan proposed a Dynamic Competitive-Cooperative Coevolu-
tionary Algorithm (dCOEA). In dCOEA, the cooperative and competitive mecha-
nisms work together to promote an adaptive problem decomposition to solve static
and dynamic multi-objective optimization problems. The algorithm uses a temporal
memory to exploit evolutionary results.

On the other hand, in [64], a similar approach called PNSCCDMO (novel cooper-
ative coevolutionary dynamic MO optimization algorithm based on non-dominated
sorting and prediction) was proposed. This algorithm also allows the decomposition
of the optimization problem and each subcomponent will cooperate to evolve for
better solutions. Another feature is that this algorithm is based on non-dominated
sorting and a modified linear regression prediction strategy to get a rapid response

to the new changes in the environment.
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Another approach inspired on cooperative co-evolutionary algorithms was pro-
posed by Xu et al. [98]. In such work, a cooperative co-evolutionary strategy based
on environment sensitivities was used to solve DMOPs. In order to apply such
strategy, first, the authors proposed to split all the decision variables into two sub-
components according to their interrelation with the environment. After that, two
sub-populations are used to cooperatively optimize the two subcomponents, with
the goal of generating the optimal solutions of the DMOPs. Finally, two prediction
methods are employed to reinitialize the two subpopulations in order to respond to
the changes in the environment. The strategy described above was incorporated
into NSGA-II and a multi-objective particle swarm optimization algorithm, in or-
der to propose two different DMOEAs called DNSGA-II-CO and DMOPSO-CO,
respectively.

Helbing and Engelbrecht [46], proposed a Dynamic Vector Evaluated Particle
Swarm Optimization algorithm (DVEPSO) to deal with DMOPs. In DVEPSO, one
swarm is dedicated to solve one objective function and the algorithm detects if there
is a change in the environment by re-evaluating sentry particles. If a change is
detected, a portion of the particles is reinitialized by changing their position and
re-evaluating their personal and neighborhood best.

Recently, Shang et al. [85], proposed a DMOEA called quantum immune clonal
coevolutionary algorithm (QICCA). QICCA is a multi-population algorithm that
uses the immune clonal function and clonal selection function of AIS. In QICCA,
the coevolutionary competitive and cooperative operations were designed and incor-
porated into the immune clonal algorithm to enhance the uniformity and diversity
of the non-dominated solutions and to enhance the exchange of information between
the various populations. Moreover, a quantum updating operation was proposed
to improve the search ability of the populations, ensuring a better distribution of
solutions in the POF.

4.3.3 Prediction-based approaches

Aside from diversity maintenance, introduction techniques or multi-populations ap-
proaches, the prediction-based approaches are also used to solve DMOPs. In such

approaches, a learning model is built to estimate the current change and the knowl-
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edge is used to predict the next change in the problem landscape. The knowledge
is also used to generate new individuals that best match the estimation of the next

change.

In [43], Hatzakis and Wallace introduced the Dynamic Queuing Multi-objective
Optimizer (D-QMOO). This algorithm exploits past information in order to predict
the behavior of a DMOP in the future. When a change is detected, the location
of the optimal solution is estimated by using a self-regressive model to predict the

location of the optimal solutions.

Liu [62], proposed a Dynamic Multi-objective Evolutionary Algorithm with Core
Estimation of Distribution (CDDMEA) that uses core estimation of a distribution
model to predict the Pareto optimal solutions of the next environment. The perfor-
mance of CDDMEA was compared against DNSGA-II-A. The author claimed that
CDDMEA is better than DNSGA-II-A. However, the experimental results need a
more thorough investigation through the use of different benchmark problems and

more performance metrics.

Zhou et. al. [107], proposed a population prediction strategy (PPS) to predict
the population of an EA after a change in the environment occurred. This approach
consists in dividing the POS into two parts, namely a center point and manifold.
When a change is detected, the next center point is predicted using a sequence of
center points. Similarly, previous manifolds are used to estimate the next mani-
fold. After that, PPS initializes the whole population by combining the predicted
center and the manifold. The performance of PPS was evaluated by comparing
the performance of three instances of RM-MEDA [102], which incorporate different

mechanisms to respond to environmental changes, including the PPS strategy.

More recently, a new DMOEA based on Kalman filter (KF) predictions was
developed by Muruganantham et al. [71]. The predictions help to guide the search
towards the changed optima; thereby, the DMOEA quickly tracks the changing POF.
Besides, a scoring scheme was devised to hybridize the KF prediction with a random

reinitialization method.

In [97], a directed search strategy (DSS) was developed to improve the perfor-
mance of NSGAII for solving DMOPs. The proposed DSS was incorporated into NS-
GAII with a differential evolution operator and form a new DMOA called NSGAITI-
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DE-DSS. In NSGAII-DE-DSS, two prediction-based methods were designed. The
first one reinitializes the population based on the predicted moving directions once
an environment change is detected. The second aims to accelerate the convergence
by generating solutions in predicted regions of the Pareto set according to the moving
direction of the non-dominated solutions between two consecutive generations.

Biswas et al. [8], proposed a variant of MOEA /D algorithm called MOEA /D-BR
(MOEA/D + PS-based nearest distance + Basic Re-initialization strategy). The al-
gorithm proposed uses the prediction model and the reinitialization scheme proposed
in [106].

Based on a steady-state principle, Jiang et al. [52] proposed a new algorithm
called steady-state and generational evolutionary algorithm (SGEA), which com-
bines the fast and continuously tracking ability of steady-state algorithms and good
diversity preservation of generational algorithms to solve DMOPs. MOEA/D-BR
and SGEA algorithms will be described in detail later because these algorithms are
used in the experimental design proposed for this thesis.

Prediction-based approaches could work very efficiently if their prediction is cor-
rect each time. But the problem with this type of approaches depends on how well
the predictors are trained. Furthermore, the prediction approaches may not be al-
ways successful. Therefore, there is a need to combine prediction-based approaches

with a diversity maintenance mechanism.

4.3.4 Memory-based approaches

Another commonly used strategy in dynamic optimization is to use memory schemes
which implicitly or explicitly store relevant information from past generations to
guide the future search. Using memory approaches is especially useful when opti-
mal solutions repeatedly return to previous locations or when the environment has
periodical changes. An implicit memory scheme uses a redundant coding represen-
tation that can store more information. The most common implicit memory scheme
used in EAs is diploidy [40]. On the other hand, in explicit memory schemes, the
information is stored in a memory separate from the population.

One disadvantage of memory-based approaches is that memory is very depen-

dent on diversity and should be used in combination with diversity-maintenance ap-
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proaches. Furthermore, redundancy of information using memory approaches could
become a problem and may not necessarily promote diversity [77].

In [104], Zhang et al. proposed an algorithm based on an artificial immune system
called Dynamic Constrained Multi-objective Optimization Artificial Immune System
(DCMOAIS). DCMOALIS uses a T-module to detect changes in the environment
and creates the initial population by using information from previous results. Once
a change is detected, a B-module is used to find the Pareto optimal solution of
the current environment. Then, the M-module stores the generated non-dominated
solutions into a memory to which the T-module will use to generate the initial
population whenever a new environment change is detected.

Wang and Li [96] proposed a new multi-strategy ensemble MOEA (MS-MOEA)
to solve DMOPs. In such algorithm, the convergence speed is accelerated using a new
offspring generation mechanism based on adaptive genetic and differential operators.
MS-MOEA uses a Gaussian mutation operator to cope with premature convergence
and a memory-like strategy to handle population reinitialization when a change takes
place. The archive update in MS-MOEA is performed using the Fast Hypervolume
(FH) strategy which consists in introducing the new solution in the archive only if
it dominates an existing solution.

More recently in [4], Azzouz et al. proposed and adaptive hybrid population man-
agement strategy using memory, local search (LS) and random strategies to tackle
DMOPs. The proposed strategy is based on a new technique that measures the
change severity, according to which, it adjusts the number of memory, LS, and ran-
dom solutions to be used. In addition, the authors also proposed a dynamic version
of NSGA-II, called Dy-NSGA-II, within which they incorporated the aforementioned

strategies.

4.3.5 Other approaches

In this section, other approaches that have been introduced for dynamic multi-
objective optimization are described. It was decided to present such approaches
apart from the proposed classification because they use different mechanisms to deal
with DMOPs or they have been applied without using any additional mechanism for

dynamism handling.
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One of the first algorithms proposed to solve DMOPs was introduced by Farina
et al. [33], and it was namely HMCEDA (Hybridized Minimal Cost Evolutionary
Deterministic Algorithm). HMCEDA is a hybrid algorithm which uses an (1+1)
evolution strategy as global optimization algorithm of the DMOP. The (141) evo-
lution strategy (ES) is an EA that applies Gaussian mutation at each generation to
one parent to create one offspring. In HMCEDA, once (1+1) ES starts to converge,
a gradient-based algorithm or a simplex Nelder-Mead [72] search algorithm is used.
HMCEDA can obtain some solutions close to the POF. However, in some cases, HM-
CEDA failed to converge towards the changing POF and struggled to find a diverse
set of solutions. In addition, time consumptions are expensive.

In [63], Liu and Wang proposed a DMOEA called DMEA (Dynamic Evolutionary
Algorithm). In such approach, the total time period of the DMOP is divided into
smaller multiple time subperiods where each one is seen as a fixed environment. In
DMEA, for each subperiod the DMOP is considered as a static MOP and for each
of the MOPs, a MOEA is used to optimize the problem.

Inspired by the clonal selection principle, a micro-cloning local exploitation op-
erator and an adaptive change reaction strategy were designed by Qian et al. to
propose a DMOEA called mcDMOA [76]. The micro-cloning operator is applied
to enhance the exploitation and exploration capabilities of the proposed algorithm,
while the adaptive change reaction strategy is used to accelerate the ability of the

algorithm to track the changing Pareto front.

4.4 Summary

In the first part of this chapter, the mathematical definitions of both DSOPs and
DMOPs were introduced. In addition, different concepts regarding dynamic multi-
objective optimization were presented.

This chapter also presented the state-of-the-art of dynamic multi-objective evo-
lutionary algorithms (DMOEAs) that have been proposed for DMO. Four main
categories of DMOEAs were identified, namely diversity-based approaches, multi-
population approaches, prediction-based approaches and memory-approaches.

From the literature review presented in this chapter, it can be seen that many
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DMOEASs have been proposed to solve DMOPs using evolutionary algorithms. How-
ever, other meta-heuristics as PSO and AIS have also been adapted for DMO. More-
over, most of the designed algorithms are focused on incorporating techniques that
introduce or maintain diversity throughout the optimization process. Even though
these kind of techniques are the most traditional and simplest way to deal with
DMOPs, different studies have demonstrated that they can not be effective under
different conditions commonly presented in DMOPs, for instance, when the problem
changes are severe, fast, recurrent or random. For such reason, other mechanisms to
solve DMOPs as the use of multi-populations, prediction techniques and memory-
based approaches have also been proposed [77]. Therefore, the design of algorithms
that uses some of these mechanisms or a combination of them is gaining attention.

Although different EAs have been used and adapted for DMO, only three algo-
rithms that use Differential Evolution operators have been proposed to solve DMOPs
[97],[96]. However, as it can be seen in the description of such DMOEAs, in two of
them the global optimization algorithm used is based on other EAs as NSGA-II and
MOEA /D. Therefore, DE operators only were adapted to replace the original vari-
ation operators of the algorithms. On the other hand, in [95] a DMOEA based on
DE was introduced. However, its empirical validation its very limited.

Aside from DMO, in dynamic single-objective optimization, EAs and AIS have
been widely used solving DSOPs [13, 42, 73, 91, 105]. Nevertheless, such combination
has been scarcely explored when solving DMOP’s. Moreover, in DMO, to the best
of the author’s knowledge, there is one EA which has not been yet extended to solve
DMOPs. This is the so-called Generalized Differential Evolution 3 (GDE3) [57]. In
this thesis, GDE3 is adapted to deal with dynamic objectives and some AIS concepts
are also considered for such task.

In the following chapters of this thesis, two new DE-based algorithms for DMO,
namely Immune GDE3 and DIDGE are proposed. Chapter 5 introduces the ex-
tensions made to GDE3 to propose the Immune GDE3 algorithm and analyzes its
performance compared to state-of-the-art algorithms. Chapter 6 introduces the use
of distance metrics to guide the search when solving DMOPs. Furthermore, in Chap-

ter 6, DIGDE algorithm and its empirical validation are presented.



Chapter 5

Immune Generalized Differential

Evolution

In the last few years, the development of dynamic multi-objective evolutionary al-
gorithms is gaining attention. As it can be seen from Chapter 4, several approaches
have been proposed. However, few works based on DE and inspired on AIS have
been introduced. In addition, DE has especially attracted the interest from re-
searches due to its excellent performance solving static optimization problems [68].
Nevertheless, DE had been little applied in dynamic optimization especially in Dy-
namic multi-objective optimization (DMO) [95]. On the other hand, AIS present
different dynamic characteristics like adaptation, diversity promotion, dynamism,
and detection. Moreover, to the best of the author’s knowledge, no method is cur-
rently available for solving DMOPs using a combination of DE and AIS. Because of
these reasons, in this chapter, a new dynamic multi-objective evolutionary algorithm
called Immune GDES3 is introduced and validated. The proposed approach is based
on the GDE3 algorithm and incorporates ideas from the clonal selection algorithm

to form a complete competitive DMOEA.

5.1 Immune GDE3

To deal with dynamic multi-objective optimization, Immune GDE3 uses the GDE3

as search algorithm, when a change is detected in the environment, an immune re-

68
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sponse based on the clonal selection principle [66] is activated. According to the
framework proposed in [107], change detection, change reaction and MOP optimizer
are the three main components in most existing dynamic multi-objective evolution-
ary algorithms, including the Immune GDE3 algorithm (See Algorithm 3). In Im-
mune GDE3, the description of these three components is presented in the following

subsections.

Algorithm 3 A General DMOEA Framework [107]

Set time step t = 0;
Initialize a population P?;
while not terminate do
if a change is detected then
Set t =t + 1;
Some change reaction;
else
Optimize the ¢t — th MOP by using an multiobjective evolutionary algorithm;
end if
end while

,_
@

5.1.1 Change detection

To detect when a change has occurred, a reevaluating solution method is used, such
that, at each iteration, Immune GDE3 selects a percentage of solutions from the
current population to reevaluate them; their objective values are compared against
their previous values (a tolerance of 1.0e-4 is used to detect changes). If there is a
change in any objective function value, then it is established that there was a change
in the DMOP. Therefore, the reevaluation solution method used in this work is only
applied in the objective functions. The percentage of solutions selected is a user
defined parameter. It is important to emphasize that in this kind of DMOPs, the
number of iterations (generations) of the algorithm and the time ¢ are related, i.e. to
detect changes, a certain number of generations must be computed (represented by
the 7, parameter) and after that, the change detection mechanism is applied. The

pseudocode of the change detection mechanism is detailed in Algorithm 4.
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Algorithm 4 ChangeDetectionMechanism ()

1: Input: Current population P
2: Select a percentage of solutions (SS) of the current population;

3: repeat

4: Select a solution x;; from the set of solutions (SS);

5 Evaluate z;; at time ¢;

6 if any value is not the same as those of its previous evaluation then
7 Change reaction: Immune Response (Algorithm 5);

8 end if

9: until At least one change is detected

5.1.2 Change reaction

When an environment change is detected, an immune response is used to respond,
so that, a population reinitialization takes place, through either the hypermutation
of previous solutions or the clonation of some individuals based on clonal selection
principle. The first one allows to maintain the diversity in the population and the
second promotes a fast convergence using history solutions, stored in memory.

The immune response works as follows:
1. Initialize a memory so that it is empty.

2. Reinitialize a percentage (¢ =20) of the population.The population in the new
environment has old solutions and reinitialized solutions, i.e., a percentage of

the population is replaced by random solutions.
3. Determinate for each individual in the population the dominance relations.

4. Split the individuals of the current population into antigens and antibodies.
For this approach, the dominated individuals are considered like antigens and
non-dominated individuals are considered like antibodies. In an immune ap-
proach, the antibodies are capable of recognizing and eliminating antigens
(worst individuals in the population). The percentage of antibodies and anti-
gens depends on the problem conditions, i.e., the number of non-dominated

solutions in each iteration.

5. Based on the cloning criteria proposed in [22], the same number of clones must

be created for each antibody, and that value is determined such that, 60% of
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the population is created as clones. Once memory is full, clones are created

following the next rules [22]:

o Zero clones are created if an individual stored in memory is repeated or

if it belongs to crowded regions.

o The number of clones is duplicated if the individual belongs to a position
whose number of solutions contained in the memory is below the average

of all occupied positions.

e The number of clones is half reduced if the number of solutions in mem-
ory of an added individual position is above the average of all occupied

positions.

Therefore, the number of clones created at each step depends on the number

of individuals in the current population and the space in memory.

6. Clone all non-dominated antibodies based on the information from the previous

step, after that, copy them into memory.

7. Determine the mutation rates for hypermutation process. The algorithm uses
an affinity measure (Euclidean distance) to compare antibodies against anti-
gens. The antigens with high affinity are considered significantly similar to
antibodies and they do not need to be modified significantly. For the hy-
permutation process, a non-uniform hypermutation operator is applied to the
antigens as follows: the mutation rate changes linearly over time, for the anti-
gens with highest affinity the mutation rate changes from 0.3 to 0.5, and for
the rest of antigens (lowest affinity) from 0.5 to 0.9. For the affinity measure
a threshold of 1.0e-4 was used. The parameters for the mutation rates were
inherited from the original paper of the clonal criteria adopted in this work
[22].

8. The process is repeated from step three until all the antigens were selected.

9. When the immune response ends, the best antibodies and their corresponding

clones are stored in the memory.
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In Immune GDE3 a memory is used as an elitism mechanism in order to maintain
the best individuals found along the optimization process. The individuals stored
in memory are non-dominated individuals not only with respect to each other but
also with respect to all of the previous individuals which attempted to enter into
the memory. To store the individuals in memory with a uniform distribution, the
adaptive grid proposed by Knowles and Corne is used [55]. The number of non-
dominated individuals stored is fixed. Therefore, the size of memory is limited, and
the memory will get full at some moment. When this occurs, a criterion to allow
the storage of other non-dominated solutions is required. A region density approach
is used to deal with this problem, i.e., the individuals that belong to less dense
regions have preference to be stored. For the implementation of the adaptive grid,
the memory should be divided according to a number of subdivisions specified as a
parameter (25 grid subdivision as it was proposed in [22]).

The mutation rates, the percentage of clones created, the threshold for the affinity
measure and the memory size are also parameters of the proposed approach, and
their values were adopted according to the experimental design proposed in [22]. An
important advantage of the immune response used by Immune GDE3 is that the
number of evaluations does not increase significantly because in step 2 only 20 % of
the population is reinitialized. Therefore, the algorithm only computes the function
evaluations of the reinitialized members.

Algorithm 5 and Fig. 5.1 show the general behavior of the immune response

implemented in Immune GDE3.

5.1.3 MOP optimization

In multi-objective optimization, the design of algorithms capable of solving prob-
lems with different characteristics, for example, solving problems with any number
of objectives and any number of constraints, is an important task. The third evo-
lution version of the Generalized Differential Evolution, GDE3, is a multi-objective
optimization algorithm designed for multiple objectives and constraints without in-
troducing any extra control parameters to the original DE. On the other hand,
different studies have shown that GDE3 improved the diversity and convergence of
the solutions over other traditional methods like NSGA-II [57],[56]. Therefore, for
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Figure 5.1: Immune Response of Immune GDE3 algorithm.
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Algorithm 5 ChangeReactionMechanism ()

1: Input: Current population

2: Initialize a memory so that it is empty;

3: Replace a percentage of the population by random solutions;
4: repeat

5: Compute the dominance relations;

6: Divide the population in antibodies and antigens;

T: Clone all the antibodies;

8: Select an antigen A from Population of antigens (PA);

9: Take (randomly) R antibodies from Population of antibodies (PS);
10: for each antibody r in R do
11: Compare the antibody r against the selected antigen A;
12: Compute its match score (affinity measure: Euclidean distance);
13: Highest affinity antigens experiment the lowest mutation rates;
14: The lowest affinity antibodies have high mutation rates;

15: end for
16: until All the antigens were selected
17: return P

the optimization process, the GDE3 algorithm was selected as a core framework, in
order to design a DMOEA suitable to solve different kind of dynamic multi-objective
search spaces.

It is necessary to emphasize that after the immune response is carried out, the
population size may grow. Then, some individuals need to be eliminated to maintain
the original population size. To do that, GDE3 uses the crowding distance method
to truncate the population.

Fig. 5.2 shows the flowchart of the Immune GDE3 algorithm. As it can be
seen in it, the immune response is activated when a change is detected in the envi-
ronment. After that, the GDE3 algorithm continues its operation by applying the
non-dominated sorting to the new population. The process stops when a maximum

number of generations is reached.

5.2 Experimental Design

In order to asses the performance of Immune GDE3, three experiments were designed.
Each of them is described below:
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Figure 5.2: Flowchart of Immune-GDE3.




Chapter 5. Immune Generalized Differential Evolution 76

5.2.1 Experiment 1: Immune GDE3 performance analysis

The aim of the first experiment is to evaluate the performance of Immune GDE3
against other well-known dynamic MOEAs. Each one of them has different mecha-
nisms to deal with dynamism and to solve the multi-objective optimization problem.

A brief description of each one of them is presented below:

« DNSGA II-A and DNSGA II-B [27]: These two variations of NSGA-II,
track the new Pareto optimal frontiers in dynamic environments. When there
is a change in the problem, on the one hand, the first version (DNSGA II-A)
uses the addition of random solutions. A percentage of the new population
is replaced with randomly created solutions. This approach helps to intro-
duce diversity when there is a change in the problem and it performs better
in problems undergoing a large change in the objectives and constraints. In
the second version (DNSGA II-B), instead of introducing random solutions,
a percentage of the population is replaced with mutated solutions of existing
solutions chosen randomly. In this case, the introduced solutions are related to
the existing population. For this reason, this method works better in problems

with less severe changes in the problem.

o DPSO-4 [65]: This algorithm is a dynamic version of the original PSO. In this
approach, when a change occurs, the reinitialization of particles is considered.
Therefore, the current position of each particle after the change will be taken
as the best position of the particle, in PSO known as pbest, and the new leader,
i.e. the best position of the whole swarm (gbest) should be identified. After
that, the particles are reevaluated and the resulting non-dominated solutions
are stored in an archive, which could be updated using a hyper-plane distribu-
tion. One important characteristic of this method is the reinitialization of the

velocity of each particle to zero when a change is detected in order to properly
follow the POF.

« MOEA/D-BR (MOEA /D + PS-based nearest distance + Basic Re-
initialization Strategy) [8]: It is a variant of the MOEA /D algorithm (Multi-

objective Evolutionary Algorithm based on Decomposition). In this approach,
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controlled Extrapolation, POF based nearest distance and a re-initialization
scheme proposed in [106] were incorporated to the MOEA /D to form a com-
plete algorithm which can work with DMOPs. This method is mainly used to

map a current population member to its past states.

« SGEA (Steady-State and Generational Evolutionary Algorithm) [52]:
It is a recently proposed algorithm to solve DMOPs, which detects environ-
mental changes and responds in a steady-state manner. Once a change is
detected, SGEA reuses a number of well-distributed solutions from past gen-
erations and relocates them close to new positions of the Pareto front based
on the information collected from previous environments. Therefore, the new
environment population consists of 50% old solutions and 50% reinitialized
solutions. Old solutions are selected by a method called farthest first selection
method. This method selects 50% old solutions that maximize diversity in the
objective space. On the other hand, reinitialized solutions are produced by
predicting the new location of the changed POS. To make a correct or at least
reasonable prediction, SGEA computes two main things: a moving direction

and a movement step-size.

As it can be seen, each selected algorithm uses different strategies of dealing
with changes in the environment. In addition, these algorithms have different mech-
anisms to work with multi-objective problems. On the one hand, the algorithms
that use the non-dominated sorting criteria (DNSGA-II versions), then the Swarm
intelligence algorithm (DPSO-4), the most traditional algorithm based on decompo-
sition of multi-objective problems (MOEA/D-BR) and finally, the steady-state and
generational evolutionary algorithm (SGEA).

The parameter settings for the proposed approach and the parameters of the
algorithms selected for comparison are inherited from referenced papers. Table 5.1
shows the parameter values used for the experiments carried out.

The performance of each algorithm is measured using different performance met-
rics adopted from multi-objective optimization. Those metrics will be explained
later.

The obtained results and the discussion remarks of this experiment are presented

in Section 5.3.1.
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Table 5.1: Parameter values for the tested algorithms.

Problem parameters

=5, ny=>H
10% of the population

algo;Ailtlth Change detection randomly selected
Number of runs 30
Stopping criteria Maximum generations = 300
. . 200 (bi-objective problems
Population size 300 Etri-objective problem))
Crossover ratio 0.8
DNSGA-II Mutation ratio 0.6
versions Percentage of replaced '
. ¢ =20%
or hyper muted solutions
Particles 20
DPSO-4 Memory size 100
Velocity vector W=0.4, C1=1.49, C2=1.49
MOEA /D-BR  Neighborhood size 20
Crossover ratio 1.0
SGEA Mutation ratio 1/n (number of decision variables)
Archive size 100
F 0.5
Immune CR 0.8
GDE3 Mutation rates 0.9-0.3
Memory size 100

5.2.2 Experiment 2: Change frequency and severity analysis

Due to the importance of the change frequency and severity analysis, the second
experiment was designed to analyze the effects of different change severities and also
change frequencies in the performance of Immune GDE3 and the most competitive
algorithm of the previous experiment. The tests were conducted at different combi-
nations of change severities and frequencies, i.e., (n;, )= (5,5), (5,10), (10,10), and
(10,5). The different combinations of n; and 7, parameters were selected according

to the experimental designed proposed in [51].

5.2.3 Experiment 3: The role of immune response

The third experiment was divided in two parts. In the first part of this experiment, a
comparison of Immune GDE3 against other dynamic GDE3 versions was carried out.
In preliminary tests, Immune GDE3 showed promising results [66]. However, with
those previously reported results, it is hard to find out why Immune GDE3 performs

better than the other compared algorithms. The main goal of this experiment is to
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analyze the role of the immune response in the GDE3 algorithm to solve DMOPs.
Therefore, this experiment was designed to understand if the competitive perfor-
mance of Immune GDES3 is due to either the immune response or other components
of the algorithm. The other three GDE3 versions considered in this experiment are

described below:

o GDE3-A and GDE3-B: These two GDE3 variants use DNSGA-II mechanism
to track environmental changes. When a change is detected, in the first ver-
sion (GDE3-A), a percentage of the new population is replaced with random
immigrants. In the second version (GDE3-B), a percentage of the popula-
tion is replaced with randomly mutated solutions. Similar to Immune GDE3,
the optimization algorithm in GDE3-A and GDE3-B is the GDE3 algorithm.
In addition, these versions use the same criteria to detect the environment
changes. The most significant difference is the change reaction mechanism

involved in each one of them.

o GDE3-BR: This version uses the prediction strategy and the re-initialization
scheme incorporated to MOEA /D-BR. Once a change is detected, the new
locations of a number of Pareto solutions in the decision space are predicted.
After that, the new individuals in the population for the changed problem are
sampled around those predicted points.The change detection also consists in

the re-evaluation of solutions.

As can be seen, the new proposed versions for this experiment use GDE3 as a
search algorithm. However, the immune response was removed from Immune GDE3
and the change reaction mechanism was replaced by other mechanisms found in the
specialized literature.

On the other hand, the second part of this experiment was designed to evaluate
the effect of the immune response in the less competitive algorithm of Experiment
one. The change detection and change reaction mechanisms were removed from that
algorithm, and they were replaced by the immune response of the Immune GDE3
algorithm. Therefore, the aim of this part of the experiment consists in analyzing
the improvement capability of the immune response when added to another multi-

objective optimization evolutionary algorithm.
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The parameter configuration of the compared algorithms in this experiment are
taken from the first experiment (n,=5, ,=>5). The percentage of replaced and hyper
mutated solutions is the same of DNSGA-II versions. For GDE3, parameters values
are ['=0.5 and C'R=0.8. These parameters were determined empirically. Therefore,
they were selected because they obtained the better results for most of the test

problems.

5.2.4 Test instances

Benchmark problems play an important role in assessing the performance of an al-
gorithm. Furthermore, benchmark problems contribute to analyzing and identifying
the strengths and weaknesses of a DMOEA, guiding the algorithm design. However,
one of the main issues in the field of dynamic multi-objective optimization is that
there are no standard test suite of benchmark problems to evaluate the performance
of DMOAs. In addition, problems with different characteristics like constrained prob-
lems, many-objective problems and high dimensionality problems are still required
[47],[48].

On the three experiments carried out, two different set of functions were selected
from the specialized literature. On the one hand, a benchmark for DMOPs recently
proposed by Biswas et al. was solved. This set of test functions introduces dynam-
icity into the POS and POF through an angular shift or slope change of the POF,
shape variation of a Polynomial or Trigonometric POS and curvature change of a

spherical POF. This benchmark has the following characteristics [8]:

o It contains 9 multi-objective dynamic functions (UDF1 to UDF9).
o All functions have two objectives, except UDF7 which has three objectives.

o The POF Geometry is continuous, discrete and time-varying curvature and/or

location.
o All are unconstrained dynamic functions.
o All objective functions are to be minimized.

e The functions have different dimensions of the search space.
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Table 5.2: Summary of main features for benchmark set used for experiments

Test Problem Problem Type Number of Objectives n POF Nature POS Nature

FDA1 Type 1 2 11 Continuos Trigonometric
FDA2 Type 111 2 13 Continuos Trigonometric
FDA3 Type 11 2 10 Continuos Trigonometric
UDF1 Type 11 2 10 Continuos Trigonometric
UDF2 Type 11 2 10 Continuos Polynomial

UDF3 Type I11 2 10 Discrete Trigonometric
UDF4 Type 11 2 10 Continuos Trigonometric
UDF5 Type 11 2 10 Continuos Polynomial

UDF6 Type 111 2 10 Discrete Trigonometric
UDF7 Type 111 3 10 Continuos Trigonometric
UDF8 Type 11 2 10 Continuos Trigonometric
UDF9 Type 1T 2 10 Continuos Polynomial

The other test functions selected were the FDA functions given by Farina et. al.
[33]. These functions were created by adapting the static problems from the ZDT
[112] and DTLZ [26] test suites. The POF and/or the POS change with time, while
the number of decision variables, the number of objectives and the boundaries of
the search space keep fixed throughout the run. Another feature of the FDA test
suite is the linear correlation among the decision variables. The dynamism in these
functions is introduced only with two types of changes: shift and shape (curvature)
change of the POF, and shift of the POS throughout with change in radius of a
spherical POF. Farina’s test suite has been extensively used by DMOPs researchers
to evaluate the performance of their algorithms.

The main features of the the benchmark problems used in our experimental design

are summarized in Table 5.2 and the details can be found in [8] and [33].

5.2.5 Performance metrics

The obtained results of the three experiments were evaluated using different per-
formance metrics adopted for DMOPs and one binary metric was also adapted to
evaluate the performance in dynamic environments.

For comparison purposes, 30 independent runs were carried out by each algo-
rithm. The obtained results in the runs were used to compute the values of four
performance metrics to assess the performance of evolutionary multi-objective opti-

mization algorithms. The metrics have been adapted to work with DMOPs. These



Chapter 5. Immune Generalized Differential Evolution 82

measures are Inverted Generational Distance (IGD), Hypervolume (HV), Spacing
(S) and Two-Set Coverage (C-metric). S and C-metric are used to analyze distri-
bution and coverage, respectively. IGD and HV measure proximity to the Pareto
Optimal front. A brief description of each metric for evaluating the performance of
DMOEASs is presented below.

o Inverted Generational Distance (IGD) [77]: It is one of the most com-
monly adopted performance metric for DMOPs. Some authors suggest that it

measures both diversity and convergence of found solutions by an algorithm

[99], [103], [51].

For DMOPs, this metric works in a similar way to the static version (see section
3.5). However, to evaluate the performance of a DMOP, an average of the IGD
values in each time step over a run is calculated, which is computed as in
Equation 5.1 [107]:

IGD = =" IGD(1) (5.1)

where IGD(¢) refers to the IGD at time instance ¢, which is calculated before

the next change.

« Hypervolume (HV) [93]: For static multi-objective optimization problems,
when HV value is larger, the performance of an algorithm is better. However,
for DMOPs, since Pareto optimal front (POF) is time-varying, it becomes
meaningless to compare different HV (¢) values through generations. The way
to overcome this problem is to compute the ratio of HV (t), i.e., HV R(t), of
POF* approximation and POF. The HVR is computed as indicated in Equa-
tion 5.2 [61]:

_ HV(POF")

HVR() = o

(5.2)
In this work, the reference point z,.s is the worst value in each objective di-
mension of all solutions at iteration ¢. The maximum value of HVR(#) must
be 1 when POF* is equal to the POF. HVR(¢) also requires that the POF
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is known and it is dependent on the sampling distribution of solutions in the
POF'. To measure how well an algorithm performs over a run according to HV,
the average of HVR(¢) at each time step needs to be computed (See Equation
5.3).

1 L

HV = > HVR(t (5:3)

S t=1

» Spacing (S) [51]: To analyze the distribution of solutions in a POF* obtained
by a DMOEA, the spacing metric was adopted. In the same way of the previous
metrics, for DMOPs the average of the spacing metric over all time steps in a

run is computed as in Equation 5.4.

3= \

2_: (5.4)

where S(t) refers to the S at time instance ¢, which is calculated before the

next change.

« Two-set Coverage (C-Metric) [111]: For DMO, this binary performance
metric estimates the coverage proportion, in terms of percentage of dominated
solutions, between two DMOEAs. In DMO, two comparisons are applied at
each time step in a run before the changes took place. The average of obtained
results at each time step is computed as in Equation 5.5. Where C(t) is the

value of C-metric at time instance t.

Z (5.5)

a3 \

5.3 Results and Discussion

The twelve aforementioned test problems (summarized in Table 5.2) were tackled
in the three proposed experimental frameworks. The statistical results of the four

performance metrics were computed over 30 independent runs.
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For IGD, HV and Spacing, statistical validation was made with 95%-confidence
Kruskal-Wallis (KW) test and the Bergmann-Hommels post-hoc test, as suggested in
[28]. Two-set coverage metric compares among all assessed algorithmic techniques.
Therefore, a pairwise comparison was carried out considering Immune GDE3 as
reference. Results were validated by a 95% confidence rank-sum Wilcoxon test. This

section presents the obtained results and the discussion remarks of each experiment.

5.3.1 Results of Experiment 1: Immune GDE3 performance

analysis

Experiment 1 compares Immune GDE3 against state-of-the-art DMOEAs. The
change severity and change frequency were n, = 5 and 7, = 5, respectively. These
values are the most used in the specialized literature of DMOPs. Lower values of
these two parameters imply more difficulty to the problems in their dynamic behavior
8].

For the obtained results of this experiment, the algorithm that outperformed the
competitors had the best rank with the number one, and the one that outperformed
the least had the worst rank. Using this ranking approach the final rank of each
algorithm and the statistical results under each performance metric (according to the
mean of the metric result) is indicated in Table 5.3. For UDFT test problem, DPSO
results are not reported, because DPSO algorithm does not work with problems with

three or more objectives.

Proximity metrics discussion

Regarding IGD metric, a lowest value is preferred, Table 5.3 presents the IGD
values and ranking of the algorithms for all test instances. From the table, it was
observed that the algorithm that obtains the lowest values (rank one) in most test
problems is Immune GDE3. Therefore, Immune GDE3 outperformed all algorithms
in nine of twelve functions. This good performance can be attributed to the fast
convergence in Immune GDE3, which helps the algorithm to track the changes in
the environment as quickly as possible. As it can be seen at the end of Table 5.3,

the results of the Bonferroni-Dunn post-hoc test confirm such finding. On the other
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hand, by comparing the algorithm performance in FDA1, FDA3 and UDF6 test
problems, where apparently SGEA and MOEA/D-BR were better than Immune
GDES3, according to the statistical test, no significant differences are observed, i.e.,
the algorithms have similar behavior. The statistical results also show that SGEA
was better than Immune GDE3 in UDF6. However, for the rest of the metrics such
behavior is not observed. If a closer look is taken, for UDF6, it can be observed that
the discrete Pareto optimal front nature increase the difficulty of the DMOP, thus
affects the performance of all the algorithms. The results obtained by this metric
indicate not only the good performance of Immune GDE3 to track the Pareto optimal
front in most of the test instances but also the good distribution of its solutions.

Results of Hypervolume metric were similar than IGD results, Table 5.3 shows
the good performance of Immune GDE3. For this metric, Immune GDE3 obtained
better results than the rest of the algorithms in eleven of twelve test problems.
However, when it was compared with MOEA /D-BR, the statistical test showed no
significant differences between these two algorithms in nine of twelve test problems
(See Table 5.3). Therefore, Immune GDE3 and MOEA /D-BR have similar behavior
in most of the test problems. Otherwise, when Immune GDE3 was compared against
SGEA, the results of the statistical test showed that SGEA was similar only in three
test problems.

Comparing with DPSO algorithm, it was observed that, for IGD Immune GDE3
was better in nine of eleven test problems. Regarding HV, Immune GDE3 obtained
better results in eight of eleven test problems. Both metrics measure proximity to
the POF, even though results showed different performance depending on the tested
problem. For IGD no significant differences were found in FDA3 and UDF5, while
HYV results showed no significant differences in FDA2, UDF4 and UDF9.

From Table 5.3, it can be clearly observed that the Immune GDE3 algorithm is
better when it is compared with DNSGA-II-A and DNSGA-II-B. The results of the
statistical test at the end of the Table confirm such finding.



Table 5.3: IGD, HV, and S mean, standard deviation values and performance rankings of the first experiment.
Resume of Kruskal-Wallis test and the Bergmann-Hommels post-hoc test . “+” means that Immune GDE3 out-

« 7

performed the algorithm in the corresponding row. “—” means that the algorithm in the corresponding row out-
performed Immune GDE3. No significant differences between Immune GDE3 and the version in the corresponding

7

row are indicated with “=".

Test IGD HV S
Prob.
Algorithm Mean St. Dev. Algorithm Mean St. Dev. Algorithm Mean St. Dev.
SGEA(1) 0.04826 +(6.0373E-3) =  Immune-GDE3 (1)  0.94760 +(1.2433E-4) SGEA(1) 0.12182 +(1.7812E-3) =
Immune-GDE3 (2) 0.05506 £(1.0464E-3) MOEA/D-BR (2) 0.91595 £(1.8250E-2) + MOEA/D-BR (2) 0.13454 £(9.9702E-3) =
MOEA/D-BR (3) 0.08601 £(6.1657E-3) + SGEA(3) 0.91350 +(1.5141E-2) + Immune-GDE3 (3) 0.13755 £(1.2220E-2)
FDA1 DNSGA-II-A (4) 0.12084 £(9.1590E-3) + DNSGA-II-B (4) 0.84152 £(2.0022E-2) + DNSGA-II-A (4) 0.18458 £(2.8821E-2) +
DNSGA-II-B (5) 0.12039 £(8.1615E-3) + DNSGA-II-A (5) 0.82670 +(1.3890E-2) + DPSO-4 (5) 0.18886 +(3.4469E-2) +
DPSO-4 (6) 0.13484 £(6.7136E-3) + DPSO-4 (6) 0.79470 £(1.5505E-2) + DNSGA-II-B (6) 0.19944 £(3.6756E-2) +
Immune-GDE3 (1) 0.01533 £(2.4733E-3) Immune-GDE3 (1) 0.94249 £(1.2731E-2) Immune-GDE3 (1) 0.04399 £(6.9097E-3)
MOEA/D-BR (2) 0.01557 £(1.4357E-3) = MOEA/D-BR (2) 0.93456 +(2.0434E-2) = DPSO-4(2) 0.06064 £(1.7331E-2) =
FDA2 SGEA(3) 0.01998 +(3.5352E-3) + DPSO-4 (3) 0.93071 +(1.8495E-2) = SGEA(3) 0.07104 £(2.7298E-3) +
DNSGA-II-A (4) 0.02724 £(3.1655E-3) + DNSGA-II-A (4) 0.89729 £(1.8394E-2) + MOEA/D-BR (4) 0.08532 £(9.7344E-3) +
DNSGA-II-B (5) 0.02604 +(3.9815E-3) —+ DNSGA-II-B (5) 0.88967 +(1.9928E-2) + DNSGA-II-B (5) 0.09028 +(3.7050E-2) +
DPSO-4 (6) 0.02843 +(4.6869E-3) + SGEA(6) 0.87145 £(1.2110E-2) + DNSGA-II-A (6) 0.09174 £(2.9774E-2) +
SGEA(1) 0.12583 £(1.4993E-2) = SGEA(1) 0.92566 £(1.2194E-2) = SGEA(1) 0.12652 £(1.3411E-2) =
Immune-GDE3 (2) 0.13446 +(8.7314E-3) Immune-GDE3 (2) 0.90627 +(1.3549E-2) Immune-GDE3 (2) 0.14233 +(5.4645E-3)
FDA3 DPSO-4 (3) 0.16005 £(4.1623E-3) = MOEA/D-BR (3) 0.88773 £(1.3071E-2) + MOEA/D-BR (3) 0.20567 £(1.5007E-2) +
MOEA/D-BR (4) 0.16332 £(1.6654E-2) + DPSO-4 (4) 0.85143 +(1.9964E-2) + DPSO-4 (4) 0.21385 £(1.3056E-2) +
DNSGA-II-B (5) 0.18242 £(2.0071E-2) + DNSGA-II-B (5) 0.85073 £(2.0319E-2) + DNSGA-II-A (5) 0.25911 £(1.6295E-2) +
DNSGA-II-A (6) 0.19680 £(2.6509E-2) + DNSGA-II-A (6) 0.84718 +(1.4987E-2) + DNSGA-II-B (6) 0.25956 £(3.1350E-2) +
Immune-GDE3 (1) 0.12688 +£(4.6714E-3) Immune-GDE3 (1) 0.92324 £(1.3869E-2) Immune-GDE3 (1) 0.08882 £(1.8400E-2)
MOEA/D-BR (2) 0.14659 +(8.0849E-3) + MOEA/D-BR (2) 0.90257 +(1.3726E-2) = MOEA/D-BR (2) 0.08969 +(1.3500E-2) =
UDF1 DPSO-4 (3) 0.16077 £(3.6720E-3) + DPSO-4 (3) 0.88330 £(7.5728E-3) + SGEA(3) 0.11742 £(1.7946E-2) +
SGEA(4) 0.17174 +(4.4882E-3) + SGEA(4) 0.87701 +(1.6893E-2) + DNSGA-II-B (4) 0.12263 +(2.6779E-2)  +
DNSGA-II-B (5) 0.17658 £(2.4053E-2) + DNSGA-II-A (5) 0.86145 £(1.2560E-2) + DPSO-4 (5) 0.12941 £(1.7208E-2) +
DNSGA-II-A (6) 0.19008 £(2.5501E-2) + DNSGA-II-B (6) 0.84651 +(2.0782E-2) + DNSGA-II-A (6) 0.13308 +(1.3565E-2) +
Immune-GDE3 (1) 0.03520 £(1.2918E-3) Immune-GDE3 (1) 0.97536 +(1.1036E-2) Immune-GDE3 (1) 0.02493 £(6.5317E-3)
MOEA/D-BR (2) 0.03884 +(6.9585E-4) = MOEA/D-BR (2) 0.95622 £(8.2531E-3) = MOEA/D-BR (2) 0.04363 £(1.5216E-2) =
UDF2 DPSO-4 (3) 0.04309 £(2.5694E-3) + DNSGA-II-B (4) 0.90056 +(5.4139E-3) + SGEA(3) 0.06210 £(2.6613E-2) +
DNSGA-II-B (4) 0.05547 +(1.1405E-3) + DPSO-4 (3) 0.89903 £(2.0427E-2) + DPSO-4 (4) 0.07989 +(3.0888E-2) +
DNSGA-II-A (5) 0.05769 £(2.6110E-4) + DNSGA-II-A (5) 0.86818 £(7.5739E-3) + DNSGA-II-B (5) 0.13437 £(1.6419E-2) +
SGEA(6) 0.06815 +(1.8508E-3) + SGEA(6) 0.83819 +(8.6301E-3) + DNSGA-II-A (6) 0.13679 £(1.1456E-2) —+
Immune-GDE3 (1) 0.31319 +(6.9004E-3) Immune-GDE3 (1)  0.89853 +(1.7168E-2) Immune-GDE3 (1)  0.11594 4(1.0428E-2)
MOEA/D-BR (2) 0.42828 +(1.8934E-2) + MOEA/D-BR (2) 0.89556 +(1.0683E-2) = MOEA/D-BR (2) 0.15769 £(5.6919E-3) +
UDF3 DPSO-4 (3) 0.52859 £(2.2757E-2) + DNSGA-II-B (3) 0.88021 +(1.8489E-2) + SGEA(3) 0.17986 +(5.9698E-3) +
DNSGA-II-B (4) 0.61963 £(3.6366E-2) + SGEA(4) 0.87594 £(1.7674E-2) + DPSO-4 (4) 0.19967 £(8.4299E-3) +
DNSGA-II-A (5) 0.65057 +(4.4689E-2) + DPSO-4 (5) 0.86224 +(1.4045E-2) + DNSGA-II-B (5) 0.22222 +(8.4713E-3) +

Continued on next page
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Table 5.3 Continued from previous page

Test IGD HV S
Prob.
SGEA(6) 0.65874 +(4.8253E-2) + DNSGA-II-A (6) 0.84892 +(1.1309E-2) + DNSGA-II-A (6) 0.23209 £(1.6955E-2) +
Immune-GDE3 (1) 0.20832 +(1.6900E-2) Immune-GDE3 (1)  0.93442 +(1.4374E-2) Immune-GDE3 (1)  0.09110 +(1.0267E-2)
SGEA(2) 0.27363 +(2.9540E-2) + DPSO-4 (2) 0.92053 +(2.0309E-2) = SGEA(2) 0.15638 +(1.2938E-2) +
UDF4 DPSO-4 (3) 0.34181 +(2.3781E-2) + MOEA/D-BR (3) 0.90249 +(1.5699E-2) = DPSO-4 (3) 0.16577 +(6.9443E-3) +
MOEA/D-BR (4) 0.44645 +(1.2293E-2) + SGEA(4) 0.90015 +(6.5063E-2) = MOEA/D-BR (4) 0.17182 +(1.1848E-2) +
DNSGA-II-A (5) 0.58673 +£(1.4736E-2) +  DNSGA-II-A (5) 0.87169 +(1.5132E-2) +  DNSGA-II-A (5) 0.23277 +(8.9446E-3)  +
DNSGA-II-B (6) 0.55904 +(2.0006E-2) + DNSGA-II-B (6) 0.86142 +(9.9539E-3) + DNSGA-II-B (6) 0.23659 +(1.1837E-2) +
Immune-GDE3 (1) 0.02243 +(7.9638E-4) Immune-GDE3 (1) 0.98301 +(7.8875E-3) Immune-GDE3 (1) 0.02498 +(7.9183E-3)
MOEA/D-BR (2) 0.03452 +(1.5078E-3) = MOEA/D-BR (2) 0.97297 £(1.0906E-2) = MOEA/D-BR (2) 0.08302 +(1.0824E-2) +
UDF5 DPSO-4 (3) 0.03562 +(3.9625E-3) = SGEA(3) 0.90920 +(8.8994E-3) + SGEA(3) 0.09637 £(3.9912E-3) +
DNSGA-II-A (4) 0.04414 +(1.8135E-3) + DPSO-4 (4) 0.90741 +(2.3542E-2) + DPSO-4 (4) 0.10250 +(7.0188E-3) +
DNSGA-II-B (5) 0.04827 +(1.4589E-3) +  DNSGA-II-B (5) 0.86734 +(9.8722E-3) +  DNSGA-II-A (5) 0.12082 +(5.4924E-3)  +
SGEA(6) 0.08891 +(7.0345E-3) + DNSGA-II-A (6) 0.85313 4(1.4637E-2) + DNSGA-II-B (6) 0.13851 +(9.0072E-3) +
SGEA(1) 1.093726+(2.5638E-2) + Immune-GDE3 (1) 0.86883 +(1.4723E-2) MOEA/D-BR (1) 0.08957 +(1.0217E-2) +
MOEA/D-BR (2) 1.23559 £(2.0391E-2) = SGEA(2) 0.86600 +(1.0413E-2) =  Immune-GDE3 (2)  0.13245 +(1.5807E-2)
UDF6 Immune-GDE3 (3) 1.26128 £(2.9028E-2) MOEA/D-BR (3) 0.85665 +(2.5743E-2) = SGEA(3) 0.16315 +(2.8150E-2) +
DPSO-4 (4) 1.30090 +(1.2724E-2) + DPSO-4 (4) 0.80307 £(1.4785E-2) + DPSO-4 (4) 0.16963 +(1.1722E-2) +
DNSGA-II-A (5) 1.53947 £(3.9231E-2) + DNSGA-II-A (5) 0.76906 +(1.3840E-2) + DNSGA-II-B (5) 0.19951 +(5.1329E-3) +
DNSGA-II-B (6) 1.61406 +(5.0917E-2) + DNSGA-II-B (6) 0.76213 £(1.6744E-2) + DNSGA-II-A (6) 0.19989 £(9.9754E-3) +
Immune-GDE3(1) 0.21558 +(9.3813E-3) Immune-GDE3 (1) 0.90152 +(1.6464E-2) Immune-GDE3 (1) 0.11741 +(7.6001E-3)
MOEA/D-BR (2) 0.23547 +£(9.4661E-3) = MOEA/D-BR (2) 0.90121 +(1.7895E-2) = MOEA/D-BR (2) 0.17646 +(1.4566E-2)  +
UDF7 SGEA(3) 0.46301 +(4.2824E-2) + SGEA(3) 0.85080 +(5.2626E-3) + SGEA(3) 0.19502 +(2.7150E-2) +
DNSGA-II-A (4) 0.62510 +£(3.5058E-2) +  DNSGA-II-B (4) 0.82240 +(2.2981E-2) +  DNSGA-II-A (4) 0.22840 +(1.3060E-2)  +
DNSGA-II-B (5) 0.68059 +(3.7617E-2) + DNSGA-II-A (5) 0.82178 +(1.5377E-2) + DNSGA-II-B (5) 0.24617 +(9.2607E-3) +
Immune-GDE3 (1) 0.39940 +(1.1659E-2) Immune-GDE3 (1) 0.90305 4-(4.4884E-3) Immune-GDE3 (1) 0.10252 +(1.0831E-2)
DPSO-4 (2) 0.45922 +(3.7157E-2) + MOEA/D-BR (2) 0.87890 +(6.9378E-3) + MOEA/D-BR (2) 0.18150 +(2.4492E-2) +
UDF8 SGEA(3) 0.46714 +(5.2666E-2) + SGEA(3) 0.85820 4(1.0848E-2) + SGEA(3) 0.21670 £(1.0985E-2) +
MOEA/D-BR (4) 0.46778 +(1.9631E-2) + DPSO-4 (4) 0.84816 +(1.0410E-2) + DPSO-4 (4) 0.21753 +(1.2865E-2) +
DNSGA-II-A (5) 0.60448 +(4.5989E-2) + DNSGA-II-A (5) 0.82592 +(1.2795E-2) + DNSGA-II-A (5) 0.22365 +(1.4291E-2) +
DNSGA-II-B (6) 0.62362 +(2.2379E-2) + DNSGA-II-B (6) 0.80866 +(1.6419E-2) + DNSGA-II-B (6) 0.25673 4(1.3008E-2) +
Immune-GDE3 (1) 0.11966 +(5.8976E-3) Immune-GDE3 (1) 0.92476 +(1.4725E-2) Immune-GDE3 (1) 0.06834 +(1.3208E-2)
MOEA/D-BR (2) 0.14116 +£(1.1506E-2) + MOEA/D-BR (2) 0.92115 +(1.8088E-2) = MOEA/D-BR (2) 0.11914 +(1.0972E-2)  +
UDF9 DPSO-4 (3) 0.15766 +(1.1598E-2) + DPSO-4 (3) 0.90375 +(1.3593E-2) = DPSO-4 (3) 0.15025 +(1.8451E-2) +
DNSGA-II-A (4) 0.23963 +£(2.2069E-2) +  SGEA(4) 0.85266 +(1.1640E-2) + SGEA(4) 0.18593 +(2.9243E-2)  +
DNSGA-II-B (5) 0.23760 +(2.3084E-2) + DNSGA-II-B (5) 0.84724 +(1.2931E-2) + DNSGA-II-B (5) 0.21807 +(1.5518E-2) +
SGEA(6) 0.32329 +(5.2898E-2) + DNSGA-II-A (6) 0.84625 +(1.7802E-2) + DNSGA-II-A (6) 0.25415 +(1.1683E-2) +
Summary of the statistical test + — = + — = + — =
DNSGA-II-A 12 0 0 12 0 0 12 0 0
Immune DNSGA-II-B 12 0 0 12 0 0 12 0 0
GDE3 DPSO-4 9 0 2 8 0 3 10 0 1
MOEA/D-BR 7 0 5 3 0 9 9 0 3
SGEA 9 1 2 9 0 3 10 0 2
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According to the results previously discussed, MOEA /D-BR and Immune GDE3

are the two most competitive algorithms and present similar performances. However,

to analyze another kind of behavior of both algorithms, the tracking IGD plots for

some representative test problems are presented. Fig. 5.3 shows the tracking of
IGD values obtained by MOEA /D-BR and Immune GDE3 in each time window for

change frequency 7, = 5, i.e., 200 generations/5 for bi-objective problems and 300

generations/5 for tri-objective problem. The figure gives a close inspection of the

tracking ability and robustness of the algorithms.
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From Fig. 5.3, it can be observed that for most test problems, Immune GDE3
obtained better IGD values and the behavior of this metric in each time step is more
constant than the values obtained by MOEA /D-BR. For example, for UDF2, UDF5,
UDF6 and UFDT test problems, the statistical test suggest that the performance of
both algorithms is similar. However, when the IGD tracking plots are analyzed, it
can be observed that the algorithm with the best values of IGD is Immune GDES.
Immune GDE3 also tracks the environmental changes fairly stably in UDF2, UDF4,
UDF5, and UDF8. MOEA/D-BR shows robust performance in UDF2, UDF4, and
UDF5. This behavior is consistent with those IGD results in Table 5.3.

Distribution metrics discussion

To complement the results obtained by proximity metrics and to analyze how good
is the distribution of solutions over the Pareto Front, the statistical results obtained
by Spacing and Two-Set Coverage metric (C-metric) are presented.

As regards Spacing metric, it can be seen in Table 5.3, that Immune-GDE3
outperformed the compared algorithms in nine of twelve test problems including
the tri-objective test problem (UDF7). In the case of FDA1, FDA3, and UDFG6,
the obtained results suggested that MOEA /D-BR and SGEA algorithms are better
than Immune GDE3. However, Immune GDE3 obtained values closer to those values
obtained by MOEA/D-BR and SGEA. Furthermore, the statistical test indicated
that there are not significant differences among these three algorithms. At the end
of Table 5.3, a resume of the significance test is presented. In such resume table,
it can be clearly observed that Immune GDE3 presented good performance in most
cases and it is equally competitive than MOEA /D-BR and SGEA, and superior when
compared with algorithms based on dominance criteria (DNSGA versions).

For UDF2 and UDF5 test problems, better values on S are obtained for all the
algorithms. Therefore, in the experiments carried out, for all algorithms, it is easier
to maintain the distribution of solutions in DMOPs with continuous POF nature
and polynomial POS nature.

In addition, from Table 5.3 it was observed that DPSO in most cases is in the
fourth rank. Therefore, the obtained results are below than Immune GDE3. One

possible explanation to this is that when a change occurs, DPSO updates the memory
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of particles, but if there are a few solutions in the memory, this diversity mainte-
nance technique may not be effective to keep a set uniformly distributed solutions.
Furthermore, in the experiments carried out, the change severity is too high, which
does not give DPSO time to track the Pareto optimal front. Due to the change sever-
ity, a similar reason can also be used to explain the poor performance of DNSGA

versions.

Finally, Table 5.4 presents the summary of the Two-Set Coverage metric sta-
tistical results. Such values were based on all the pairwise combinations of the 30
independent runs executed by each algorithm (each one of the 30 Pareto fronts of
one algorithm was compared with each one the 30 fronts obtained by the other al-
gorithm). As mentioned before, for this metric the optimal value is 1. So that, if
all solutions of an algorithm dominate or are equal to all the solutions of the other
algorithm, the value for C-metric will be equal to 1, or 0 otherwise. To say that an
algorithm is better than another, it is preferable to have values close to 1. Table 5.5,

presents the obtained results by the significance test.

Table 5.4 shows the achieved results between each comparison in both directions
in a specific test problem. The comparison of algorithms that obtains a higher value
of non-dominated solutions is marked in boldface and means that the first algorithm
in the comparison is considerably better than the second one. In table 5.4, it can
also be observed that, in some cases, the comparisons showed values equal to zero
or one, when this occurs means that in all the executions, the first algorithm in
the comparison dominates all the solutions of the second algorithm. Therefore, the
algorithm that obtains a value equal to one has better performance than the other.
The results suggested that, when Immune GDE3 is compared with DNSGA-II-A
and DNSGA-II-B, Immune GDE3 always obtains values equal to one in this metric,
therefore, as the same way that the results of the metrics presented before, Immune
GDE3 outperformed the DNSGA versions.

Regarding the second most competitive algorithm (MOEA/D-BR), the results
of this binary metric showed that, Immune GDE3 obtains better results in eight of
twelve problems, similar to Spacing where the statistical test showed that Immune-
GDES3 is better than MOEA/D-BR in nine of the twelve problems and had similar

performance in the remaining test problems including the problems where apparently
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MOEA/D-BR is better (Table 5.5). From Table 5.5, it can also be observed that, in
contrast with the metrics presented before, Immune GDE3 outperformed DPSO and

SGEA in more test problems (ten and eleven, respectively). Taking into account that
DPSO does not work with UDFE7, only in one test instance (UDF4), both algorithms
presented a similar behavior. Regarding SGEA algorithm, the results in Tables 5.4
and 5.5, showed that Immune GDE3 was equal to SGEA only on FDA1 test problem

and outperformed SGEA in the remaining test problems.

Table 5.4: Statistical results of C mean and standard deviation values for all test
problems. The best results are marked in boldface.

Algorithm comparison Mean St. dev. Algorithm comparison Mean St. dev.
DNSGA-II-A vs DNSGA-II-B 0.99636  +(0.0063279) DNSGA-II-A vs DNSGA-II-B 0.64866  +(0.0222756)
FDA1 DNSGA-II-B vs DNSGA-II-A 0.98354 +(0.0036559) UDF4 DNSGA-II-B vs DNSGA-II-A 0.32423 +(0.0178040)
DNSGA-II-A vs Immune-GDE3 0.01312 +(0.0054813) DNSGA-II-A vs Immune-GDE3 0 =£(0.0000000)
Immune-GDE3 vs DNSGA-II-A 0.99834  +(0.0023691) Immune-GDE3 vs DNSGA-II-A 1 +(0.0000000)
DNSGA-II-A vs DPSO-4 1 £(0.0000000) DNSGA-II-A vs DPSO-4 0.10374  +(0.0064699)
DPSO-4 vs DNSGA-II-A 0 +(0.0000000) DPSO-4 vs DNSGA-II-A 0.92436  +(0.0035292)
DNSGA-II-A vs MOEA/D-BR 0.03410  +(0.0006372) DNSGA-II-A vs MOEA/D-BR 0.34747  +(0.0063246)
MOEA/D-BR vs DNSGA-II-A 0.99233  +(0.0053674) MOEA/D-BR vs DNSGA-II-A 0.68466  +(0.0089737)
DNSGA-II-A vs SGEA 0  +(0.0000000) DNSGA-II-A vs SGEA 0.08384  +(0.0072644)
SGEA vs DNSGA-TI-A 1 +(0.0000000) SGEA vs DNSGA-II-A 0.95572  +(0.0026849)
DNSGA-II-B vs Immune-GDE3 0  +(0.0000000) DNSGA-II-B vs Immune-GDE3 0  =£(0.0000000)
Immune-GDE3 vs DNSGA-II-B 1 +(0.0000000) Immune-GDE3 vs DNSGA-II-B 1 +(0.0000000)
DNSGA-II-B vs DPSO-4 0.97031 +(0.0124274) DNSGA-II-B vs DPSO-4 0  =£(0.0000000)
DPSO-4 vs DNSGA-II-B 0.75072 +(0.0231390) DPSO-4 vs DNSGA-II-B 1 +(0.0000000)
DNSGA-II-B vs MOEA/D-BR 0 +(0.0000000) DNSGA-II-B vs MOEA/D-BR 0.61354  +(0.0003654)
MOEA/D-BR vs DNSGA-II-B 1 £(0.0000000) MOEA/D-BR vs DNSGA-II-B 0.99437  £(0.0073637)
DNSGA-II-B vs SGEA 0 +(0.0000000) DNSGA-II-B vs SGEA 0.01936  +(0.0004017)
SGEA vs DNSGA-II-B 1 +(0.0000000) SGEA vs DNSGA-II-B 0.99720  £(0.0002847)
Immune-GDE3 vs DPSO-4 1 +(0.0000000) Immune-GDE3 vs DPSO-4 0.92535  4(0.0048849)
DPSO-4 vs Immune-GDE3 0 +(0.0000000) DPSO-4 vs Immune-GDE3 0.92435  +(0.0089828)
Immune-GDE3 vs MOEA/D-BR  0.99783  4(0.0005893) Immune-GDE3 vs MOEA/D-BR  0.98646  =(0.0006465)
MOEA/D-BR vs Immune-GDE3 0.96471 +(0.0004628) MOEA/D-BR vs Immune-GDE3 0.79365  +(0.0063627)
Immune-GDE3 vs SGEA 0.97153  +(0.0169668) Immune-GDE3 vs SGEA 0.97027  £(0.0003017)
SGEA vs Immune-GDE3 0.99163  +(0.0118076) SGEA vs Immune-GDE3 0.92074  +(0.0038792)
DPSO-4 vs MOEA/D-BR. 0 +£(0.0000000) DPSO-4 vs MOEA /D-BR 0.90873  £(0.0007465)
MOEA/D-BR vs DPSO-4 1 +(0.0000000) MOEA/D-BR vs DPSO-4 0.79386  +(0.0064643)
DPSO-4 vs SGEA 0 +£(0.0000000) DPSO-4 vs SGEA 0.92047  £(0.0084501)
SGEA vs DPSO-4 1 +(0.0000000) SGEA vs DPSO-4 0.91073  +(0.0010746)
MOEA/D-BR vs SGEA 0.88577  +(0.0211440) MOEA/D-BR vs SGEA 0.85304  +(0.0070164)
SGEA vs MOEA/D-BR 0.96453  +(0.0141464) SGEA vs MOEA/D-BR 0.94017  4(0.0020744)
DNSGA-II-A vs DNSGA-II-B 0.94833  +(0.0073894) DNSGA-II-A vs DNSGA-II-B 0.64407  +(0.0309839)
FDA2 DNSGA-II-B vs DNSGA-II-A 0.89262 +(0.0036559) UDF5 DNSGA-II-B vs DNSGA-II-A 0.38646 +(0.0289828)
DNSGA-II-A vs Immune-GDE3 0 +(0.0000000) DNSGA-II-A vs Immune-GDE3 0.24564  +(0.0783647)
Immune-GDE3 vs DNSGA-II-A 1 +(0.0000000) Immune-GDE3 vs DNSGA-II-A 0.99865  +(0.0064742)
DNSGA-II-A vs DPSO-4 0.34636  +(0.0063246) DNSGA-II-A vs DPSO-4 0.38747  +(0.0003564)
DPSO-4 vs DNSGA-II-A 0.68734  +(0.0189737) DPSO-4 vs DNSGA-II-A 0.64775  £(0.0087475)
DNSGA-II-A vs MOEA/D-BR 0 +(0.0000000) DNSGA-II-A vs MOEA/D-BR 0.55074  +(0.0274775)
MOEA/D-BR vs DNSGA-II-A 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-A 0.96355  £(0.0007748)
DNSGA-II-A vs SGEA 0.31435 +(0.0188654) DNSGA-II-A vs SGEA 0.83271 +(0.0301784)
SGEA vs DNSGA-TI-A 0.91636  +(0.0742175) SGEA vs DNSGA-II-A 0.71021 +(0.0061038)
DNSGA-II-B vs Immune-GDE3 0 +(0.0000000) DNSGA-II-B vs Immune-GDE3 0 =£(0.0000000)
Immune-GDE3 vs DNSGA-II-B 1 +(0.0000000) Immune-GDE3 vs DNSGA-II-B 1 +(0.0000000)
DNSGA-II-B vs DPSO-4 0 +£(0.0000000) DNSGA-II-B vs DPSO-4 0.05807  =£(0.0748049)
DPSO-4 vs DNSGA-II-B 1 +(0.0000000) DPSO-4 vs DNSGA-II-B 0.85365  +(0.0074085)
DNSGA-II-B vs MOEA/D-BR 0 £(0.0000000) DNSGA-II-B vs MOEA/D-BR 0 £(0.0000000)
MOEA/D-BR vs DNSGA-II-B 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-B 1 +(0.0000000)
DNSGA-II-B vs SGEA 0.23355 +(0.0110186) DNSGA-II-B vs SGEA 0.84074  £(0.0064824)
SGEA vs DNSGA-II-B 0.93435 +(0.0048168) SGEA vs DNSGA-II-B 0.77028  +(0.0020469)
Immune-GDE3 vs DPSO-4 0.78634  +(0.0189737) Immune-GDE3 vs DPSO-4 0.96038  +(0.0032379)

Continued on next page
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Table 5.4 Continued from previous page

Algorithm comparison Mean St. dev. Algorithm comparison Mean St. dev.
DPSO-4 vs Immune-GDE3 0.34462  £(0.0063246) DPSO-4 vs Immune-GDE3 0.59427  £(0.0534791)
Immune-GDE3 vs MOEA/D-BR  0.97633  +(0.0004628) Immune-GDE3 vs MOEA/D-BR  0.96047  4(0.0074297)
MOEA/D-BR vs Immune-GDE3 0.93784  4(0.0007393) MOEA/D-BR vs Immune-GDE3 0.89731  =£(0.0031941)
Immune-GDE3 vs SGEA 0.98284  +(0.0062702) Immune-GDE3 vs SGEA 0.99842  £(0.0001074)
SGEA vs Immune-GDE3 0.89351  4(0.0243818) SGEA vs Immune-GDE3 0.24976  =£(0.0040176)
DPSO-4 vs MOEA/D-BR 0.60358  £(0.0189737) DPSO-4 vs MOEA/D-BR 0.87075  £(0.0039425)
MOEA/D-BR vs DPSO-4 0.95739  +(0.0006373) MOEA /D-BR vs DPSO-4 0.90373  4(0.0007465)
DPSO-4 vs SGEA 0.18374  £(0.0125711) DPSO-4 vs SGEA 0.88019  £(0.0091594)
SGEA vs DPSO-4 0.98736  +(0.0341637) SGEA vs DPSO-4 0.45280  £(0.0010738)
MOEA/D-BR vs SGEA 0.96377  +(0.0122939) MOEA/D-BR vs SGEA 0.95017  4(0.0001037)
SGEA vs MOEA/D-BR 0.87356  4(0.0417031) SGEA vs MOEA/D-BR 0.13017  £(0.0030684)
DNSGA-II-A vs DNSGA-II-B 0.64640  +(0.0040984) DNSGA-II-A vs DNSGA-II-B 0.57094  £(0.0084327)

FDA3 DNSGA-II-B vs DNSGA-II-A 0.38853 =+(0.0028983) UDF6 DNSGA-II-B vs DNSGA-II-A 0.38934 +(0.0096609)
DNSGA-II-A vs Immune-GDE3 0 £(0.0000000) DNSGA-II-A vs Immune-GDE3 0.02740  =£(0.0028095)
Immune-GDE3 vs DNSGA-TI-A 1 +(0.0000000) Immune-GDE3 vs DNSGA-TI-A 0.99016  £(0.0002075)
DNSGA-II-A vs DPSO-4 0.59636  4(0.0024555) DNSGA-II-A vs DPSO-4 0.23482  £(0.0198886)
DPSO-4 vs DNSGA-II-A 0.71078  +(0.0097367) DPSO-4 vs DNSGA-TI-A 0.89045  +(0.0913292)
DNSGA-II-A vs MOEA/D-BR 0 +(0.0000000) DNSGA-II-A vs MOEA/D-BR 0 4(0.0000000)
MOEA/D-BR vs DNSGA-II-A 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-A 1 4(0.0000000)
DNSGA-TI-A vs SGEA 0 4(0.0000000) DNSGA-II-A vs SGEA 0.03629  =£(0.0394824)
SGEA vs DNSGA-II-A 1 +(0.0000000) SGEA vs DNSGA-TI-A 0.99628  +(0.0006264)
DNSGA-TI-B vs Immune-GDE3 0 4(0.0000000) DNSGA-TI-B vs Immune-GDE3 0 4(0.0000000)
Immune-GDE3 vs DNSGA-II-B 1 4(0.0000000) Immune-GDE3 vs DNSGA-II-B 1 4(0.0000000)
DNSGA-II-B vs DPSO-4 0 £(0.0000000) DNSGA-II-B vs DPSO-4 0.10737  £(0.0038955)
DPSO-4 vs DNSGA-II-B 1 +(0.0000000) DPSO-4 vs DNSGA-II-B 0.87395  +(0.0046375)
DNSGA-II-B vs MOEA/D-BR 0 £(0.0000000) DNSGA-II-B vs MOEA/D-BR 0 £(0.0000000)
MOEA/D-BR vs DNSGA-II-B 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-B 1 4(0.0000000)
DNSGA-II-B vs SGEA 0 £(0.0000000) DNSGA-II-B vs SGEA 0.07246  £(0.0071534)
SGEA vs DNSGA-II-B 1 +(0.0000000) SGEA vs DNSGA-II-B 0.99184  4(0.0004801)
Immune-GDE3 vs DPSO-4 0.87433  +(0.0038974) Immune-GDE3 vs DPSO-4 0.83725  £(0.0032379)
DPSO-4 vs Immune-GDE3 0.32434  +(0.0036755) DPSO-4 vs Immune-GDE3 0.71084  £(0.0083661)
Immune-GDE3 vs MOEA/D-BR  0.97882  £(0.0006793) Immune-GDE3 vs MOEA/D-BR 0.98037  £(0.0023664)
MOEA/D-BR vs Immune-GDE3 0.93945  4(0.0035489) MOEA/D-BR vs Immune-GDE3  0.98537  4(0.0031940)
Immune-GDE3 vs SGEA 0.96341  +(0.0051781) Immune-GDE3 vs SGEA 0.92404  4(0.0036442)
SGEA vs Immune-GDE3 0.90726  4(0.0460324) SGEA vs Immune-GDE3 0.86027  =£(0.0064280)
DPSO-4 vs MOEA/D-BR 0.65838  £(0.0073666) DPSO-4 vs MOEA/D-BR 0.77033  =£(0.0094832)
MOEA/D-BR vs DPSO-4 0.94634  +(0.0005724) MOEA/D-BR vs DPSO-4 0.97902  £(0.0076381)
DPSO-4 vs SGEA 0.91543  +(0.0424100) DPSO-4 vs SGEA 0.78462  £(0.0015745)
SGEA vs DPSO-4 0.27053  £(0.0031291) SGEA vs DPSO-4 0.94810  £(0.0010728)
MOEA/D-BR vs SGEA 0.83644  4(0.0977426) MOEA/D-BR vs SGEA 0.93161  4(0.0010748)
SGEA vs MOEA/D-BR 0.95016  +(0.0411382) SGEA vs MOEA/D-BR 0.82760  =£(0.0086491)
DNSGA-II-A vs DNSGA-II-B 0.85373  +(0.0093792) DNSGA-II-A vs DNSGA-II-B 0.73527  4(0.0063372)

UDF1 DNSGA-II-B vs DNSGA-II-A 0.41749 +(0.0064743) UDF7  DNSGA-II-B vs DNSGA-II-A 0.57305 +(0.0024584)
DNSGA-TI-A vs Immune-GDE3 0 4(0.0000000) DNSGA-TI-A vs Immune-GDE3 0.10769  =£(0.0050384)
Immune-GDE3 vs DNSGA-II-A 1 4(0.0000000) Immune-GDE3 vs DNSGA-II-A 0.98387  4(0.0016485)
DNSGA-TI-A vs DPSO-4 0.63462  £(0.0005382) DNSGA-TI-A vs DPSO-4 - -
DPSO-4 vs DNSGA-II-A 0.78045  +(0.0073890) DPSO-4 vs DNSGA-II-A - -
DNSGA-II-A vs MOEA/D-BR 0 £(0.0000000) DNSGA-II-A vs MOEA/D-BR 0.23039  £(0.0088579)
MOEA/D-BR vs DNSGA-TI-A 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-A 0.92737  4(0.0035292)
DNSGA-TI-A vs SGEA 0.41063  £(0.0350373) DNSGA-TI-A vs SGEA 0.84204  £(0.0026484)
SGEA vs DNSGA-II-A 0.82963  +(0.0051631) SGEA vs DNSGA-II-A 0.89247  4(0.0009626)
DNSGA-II-B vs Immune-GDE3 0 £(0.0000000) DNSGA-II-B vs Immune-GDE3 0.01314  =£(0.0054813)
Immune-GDE3 vs DNSGA-TI-B 1 +(0.0000000) Immune-GDE3 vs DNSGA-II-B 0.98684  +(0.0009106)
DNSGA-II-B vs DPSO-4 0 4(0.0000000) DNSGA-II-B vs DPSO-4 - -
DPSO-4 vs DNSGA-II-B 1 £(0.0000000) DPSO-4 vs DNSGA-II-B - -
DNSGA-II-B vs MOEA/D-BR 0 4(0.0000000) DNSGA-II-B vs MOEA/D-BR 0 4(0.0000000)
MOEA/D-BR vs DNSGA-II-B 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-B 1 4(0.0000000)
DNSGA-II-B vs SGEA 0.54257  4(0.0176409) DNSGA-II-B vs SGEA 0.80187  =£(0.0107485)
SGEA vs DNSGA-II-B 0.80378  +(0.0360274) SGEA vs DNSGA-TI-B 0.91024  £(0.0038169)
Immune-GDE3 vs DPSO-4 1 +(0.0000000) Immune-GDE3 vs DPSO-4 - -
DPSO-4 vs Immune-GDE3 0 £(0.0000000) DPSO-4 vs Immune-GDE3 - -
Immune-GDE3 vs MOEA/D-BR  0.99635  4(0.0000564) Immune-GDE3 vs MOEA/D-BR  0.99027  4(0.0006436)
MOEA/D-BR vs Immune-GDE3 0.96538  £(0.0005476) MOEA/D-BR vs Immune-GDE3 0.98039  £(0.0012704)
Immune-GDE3 vs SGEA 0.97362  +(0.0034037) Immune-GDE3 vs SGEA 0.97428  £(0.0003178)
SGEA vs Immune-GDE3 0.21036  4(0.0260462) SGEA vs Immune-GDE3 0.90374  £(0.0048192)
DPSO-4 vs MOEA/D-BR 0.72942  +(0.0056367) DPSO-4 vs MOEA /D-BR, - -
MOEA/D-BR vs DPSO-4 0.98540  +(0.0005638) MOEA/D-BR vs DPSO-4 - -
DPSO-4 vs SGEA 0.92036  +(0.0063801) DPSO-4 vs SGEA - -
SGEA vs DPSO-4 0.89015  4(0.0030763) SGEA vs DPSO-4 - -
MOEA/D-BR vs SGEA 0.94016  +(0.0010763) MOEA/D-BR vs SGEA 0.93917  4(0.0015714)

Continued on next page
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Table 5.4 Continued from previous page

Algorithm comparison Mean St. dev. Algorithm comparison Mean St. dev.
SGEA vs MOEA/D-BR 0.86971 +(0.0100358) SGEA vs MOEA/D-BR 0.88197  =£(0.0019646)
DNSGA-TI-A vs DNSGA-TI-B 0.48047  £(0.0067486) DNSGA-TI-A vs DNSGA-II-B 0.67394  £(0.0063974)

UDF2 DNSGA-II-B vs DNSGA-II-A 0.69463 +(0.0084327) UDF8 DNSGA-II-B vs DNSGA-II-A 0.44890 +(0.0093876)
DNSGA-TI-A vs Immune-GDE3 0 £(0.0000000) DNSGA-TI-A vs Immune-GDE3 0 4(0.0000000)
Immune-GDE3 vs DNSGA-TI-A 1 +(0.0000000) Immune-GDE3 vs DNSGA-TI-A 1 4(0.0000000)
DNSGA-II-A vs DPSO-4 0 £(0.0000000) DNSGA-II-A vs DPSO-4 0.11835  =£(0.0094365)
DPSO-4 vs DNSGA-II-A 1 +(0.0000000) DPSO-4 vs DNSGA-II-A 0.87494  4(0.0074989)
DNSGA-II-A vs MOEA/D-BR 0 £(0.0000000) DNSGA-II-A vs MOEA/D-BR 0.04639  £(0.0098485)
MOEA/D-BR vs DNSGA-TI-A 1 +(0.0000000) MOEA/D-BR vs DNSGA-TI-A 0.97364  +(0.0009849)
DNSGA-II-A vs SGEA 0.89163  +(0.0036183) DNSGA-II-A vs SGEA 0.36492  £(0.0123715)
SGEA vs DNSGA-TI-A 0.81063  4(0.0010374) SGEA vs DNSGA-TI-A 0.84862  +(0.0037810)
DNSGA-II-B vs Immune-GDE3 0 £(0.0000000) DNSGA-II-B vs Immune-GDE3 0 4(0.0000000)
Immune-GDE3 vs DNSGA-TI-B 1 +(0.0000000) Immune-GDE3 vs DNSGA-TI-B 1 4(0.0000000)
DNSGA-II-B vs DPSO-4 0.53273  £(0.0003456) DNSGA-II-B vs DPSO-4 0.06384  =£(0.0007475)
DPSO-4 vs DNSGA-II-B 0.85039  +(0.0063613) DPSO-4 vs DNSGA-TI-B 0.88905  £(0.0047429)
DNSGA-II-B vs MOEA/D-BR 0 4(0.0000000) DNSGA-II-B vs MOEA/D-BR 0 4(0.0000000)
MOEA/D-BR vs DNSGA-II-B 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-B 1 £(0.0000000)
DNSGA-II-B vs SGEA 0.91013  +(0.0016591) DNSGA-II-B vs SGEA 0.29107  £(0.0301831)
SGEA vs DNSGA-II-B 0.80103  £(0.0030817) SGEA vs DNSGA-TI-B 0.89201  £(0.0016884)
Immune-GDE3 vs DPSO-4 1 +(0.0000000) Immune-GDE3 vs DPSO-4 0.97994  +(0.0063279)
DPSO-4 vs Immune-GDE3 0 4(0.0000000) DPSO-4 vs Immune-GDE3 0.01980  =£(0.0069043)
Immune-GDE3 vs MOEA/D-BR  0.98037  +(0.0046646) Immune-GDE3 vs MOEA/D-BR 0.97394  £(0.0003274)
MOEA/D-BR vs Immune-GDE3 0.97458  £(0.0002557) MOEA/D-BR vs Immune-GDE3  0.99068  =£(0.0006379)
Immune-GDE3 vs SGEA 0.99896  +(0.0003618) Immune-GDE3 vs SGEA 0.96103  4(0.0004017)
SGEA vs Immune-GDE3 0.05183  4(0.0015319) SGEA vs Immune-GDE3 0.89017  =£(0.0030649)
DPSO-4 vs MOEA/D-BR 0.49402  £(0.0096739) DPSO-4 vs MOEA/D-BR 0.10835  £(0.0046785)
MOEA/D-BR vs DPSO-4 0.97359  +(0.0004365) MOEA/D-BR vs DPSO-4 0.90027  4(0.0006485)
DPSO-4 vs SGEA 0.81648  +(0.0075103) DPSO-4 vs SGEA 0.91072  £(0.0389100)
SGEA vs DPSO-4 0.64364  4(0.0039049) SGEA vs DPSO-4 0.87017  =£(0.0010040)
MOEA/D-BR vs SGEA 0.96301  +(0.0072917) MOEA/D-BR vs SGEA 0.89104  =£(0.0108420)
SGEA vs MOEA/D-BR 0.12937  4(0.0010284) SGEA vs MOEA/D-BR 0.92074  £(0.0030680)
DNSGA-II-A vs DNSGA-II-B 0.59075  +(0.0069464) DNSGA-II-A vs DNSGA-II-B 0.86383  £(0.0083839)

UDF3 DNSGA-II-B vs DNSGA-II-A 0.32007 +(0.0040489) UDF9 DNSGA-II-B vs DNSGA-II-A 0.74949 =+(0.0009876)
DNSGA-II-A vs Immune-GDE3 0 £(0.0000000) DNSGA-II-A vs Immune-GDE3 0 4(0.0000000)
Immune-GDE3 vs DNSGA-TI-A 1 +(0.0000000) Immune-GDE3 vs DNSGA-TI-A 1 4(0.0000000)
DNSGA-II-A vs DPSO-4 0.49365  4(0.0057337) DNSGA-II-A vs DPSO-4 0.25191  =£(0.0099375)
DPSO-4 vs DNSGA-II-A 0.77256  +(0.0006464) DPSO-4 vs DNSGA-TI-A 0.91764  £(0.0064385)
DNSGA-II-A vs MOEA/D-BR 0 4(0.0000000) DNSGA-II-A vs MOEA/D-BR 0.02749  =£(0.0004838)
MOEA/D-BR vs DNSGA-TI-A 1 +(0.0000000) MOEA/D-BR vs DNSGA-II-A 0.97937  £(0.0008364)
DNSGA-II-A vs SGEA 0.82674  4(0.0107441) DNSGA-TI-A vs SGEA 0.86488  4(0.0046794)
SGEA vs DNSGA-II-A 0.79817  +(0.0086173) SGEA vs DNSGA-TI-A 0.72840  £(0.0027941)
DNSGA-II-B vs Immune-GDE3 0 4(0.0000000) DNSGA-II-B vs Immune-GDE3 0 4(0.0000000)
Immune-GDE3 vs DNSGA-II-B 1 £(0.0000000) Immune-GDE3 vs DNSGA-II-B 1 4(0.0000000)
DNSGA-II-B vs DPSO-4 0.02799  £(0.0011996) DNSGA-II-B vs DPSO-4 0.03735  £(0.0048275)
DPSO-4 vs DNSGA-II-B 0.98699  +(0.0029973) DPSO-4 vs DNSGA-II-B 0.88906  +(0.0097374)
DNSGA-II-B vs MOEA/D-BR 0 £(0.0000000) DNSGA-II-B vs MOEA/D-BR 0 4(0.0000000)
MOEA/D-BR vs DNSGA-II-B 1 4(0.0000000) MOEA/D-BR vs DNSGA-II-B 1 4(0.0000000)
DNSGA-TI-B vs SGEA 0.86016  +(0.0015371) DNSGA-II-B vs SGEA 0.82049  4(0.0013885)
SGEA vs DNSGA-II-B 0.75017  4(0.0010836) SGEA vs DNSGA-II-B 0.76012  =£(0.0010874)
Immune-GDE3 vs DPSO-4 0.94644  +(0.0309839) Immune-GDE3 vs DPSO-4 0.96939  £(0.0047282)
DPSO-4 vs Immune-GDE3 0.68747  4(0.0289828) DPSO-4 vs Immune-GDE3 0.23810  =£(0.0109375)
Immune-GDE3 vs MOEA/D-BR  0.98468  +(0.0393743) Immune-GDE3 vs MOEA/D-BR  0.99037  4(0.0002738)
MOEA/D-BR vs Immune-GDE3 0.95375  4(0.0445446) MOEA/D-BR vs Immune-GDE3 0.92937  £(0.0017393)
Immune-GDE3 vs SGEA 0.99167  +(0.0001683) Immune-GDE3 vs SGEA 0.97017  4(0.0001844)
SGEA vs Immune-GDE3 0.08351  4(0.0080363) SGEA vs Immune-GDE3 0.89875  £(0.0017684)
DPSO-4 vs MOEA/D-BR 0.74364  £(0.8340465) DPSO-4 vs MOEA/D-BR 0.52049  £(0.0053949)
MOEA/D-BR vs DPSO-4 0.96535  +(0.0006365) MOEA/D-BR vs DPSO-4 0.97229  4(0.0063931)
DPSO-4 vs SGEA 0.80930  +(0.0062849) DPSO-4 vs SGEA 0.82545  +(0.0010651)
SGEA vs DPSO-4 0.43974  £(0.0010884) SGEA vs DPSO-4 0.79462  £(0.0017910)
MOEA/D-BR vs SGEA 0.96017  +(0.0003801) MOEA/D-BR vs SGEA 0.88017  4(0.0049914)
SGEA vs MOEA/D-BR 0.11082  £(0.0408384) SGEA vs MOEA/D-BR 0.81920  £(0.0010958)
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Table 5.5: Resume of Wilcoxon Statistical Test on C' metric. “4” means that Immune
GDE3 outperformed the algorithm in the corresponding row. “-” means that the
algorithm in the corresponding row outperformed Immune GDE3. No significant
differences between Immune GDE3 and the version in the corresponding row are
indicated with “=".

FDA1 FDA2 FDA3 UDF1 UDF2 UDF3 UDF4 UDF5 UDF6 UDF7 UDF8 UDF9 +

DNSGA-II-A + + + + + + + + + + + + 2 0 0
Immune-GDE3 DNSGA-II-B + + + + + + + + + + + + 12 0 0
DPSO-4 + + + + + + = + + NA o+ + 101 0
MOEA/D-BR = + + + = + + + + = = + 8 4 0
SGEA = + + + + + + + + + + + 1 1 0

5.3.2 Results of Experiment 2: Change frequency and sever-

ity analysis

The second experiment analyzed the effects of different change severities and fre-
quencies in the performance of Immune GDE3 and MOEA /D-BR. From experiment
one, it was observed that, in general, MOEA /D-BR was the second most competitive
algorithm. For that reason, it was selected to carry out the analysis of frequency
and severity. The experiments were computed with other three problem parameter
configurations (n:, 7:)= (5,10), (10,10), and (10,5). The twelve test problems, as in
Experiment 1, were solved and the obtained results were analyzed according to the
performance metrics. In Tables 5.6, 5.7, 5.8, and 5.9 the results of the average and
standard deviation of each metric over different change severities and frequencies are

presented. These Tables also include a summary of the statistical test applied.

Proximity metrics discussion

Regarding the IGD metric, from Table 5.6, it was observed that Immune GDE3
outperformed MOEA /D-BR in all test problems for the last three configurations of
the problem parameters. For configuration (n,=10, 7,=10), both algorithms pre-
sented better performance than the results obtained in the other combinations of
change severity and frequency. This behavior could be attributed to the fact that
a higher value of such parameters decreases the difficulty of the problem. From the
same Table 5.6, it was also observed that Immune GDES3 presented a better per-
formance than MOEA /D-BR when the problems have a high change frequency. In
contrast, MOEA /D-BR obtained good results when the changes are less frequent,
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Table 5.6: IGD mean and standard deviation values for all test problems over dif-
ferent configurations of problem parameters (n;, 7;) and summary of Kruskal-Wallis
test and the Bergmann-Hommels post-hoc test. “4+” means that Immune GDE3
outperformed MOEA/D-BR. “-” means that MOEA/D-BR outperformed Immune
GDE3. No significant differences between Immune GDE3 and MOEA/D-BR are
indicated with “=". The best results are marked in boldface

Test Problem Algorithm (5,5) (5,10) (10,10) (10,5)
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.
FDA1 Immune-GDE3 0.055062 +(1.0464E-3) 4 0.048831 +(5.9498E-4) 4 0.029793  +(2.3621E-4) i 0.031860 =+(4.1996E-3) i
MOEA/D-BR 0.086006  +(6.1657E-3) 0.077389  £(4.1316E-3) 0.059057  £(1.2079E-3) 0.067092  £(2.3079E-3)
FDA2 Immune-GDE3 0.015333 +(2.4733E-3) _ 0.011475 =£(8.0401E-4) 4 0.009862 +(4.1849E-4) 4 0.011642 =+(1.4059E-3) 4
MOEA/D-BR 0.015573  +£(1.4357E-3) —  0.016149  +(2.7805E-3) 0.010136  +(3.2106E-3) 0.015224  +(1.5365E-3)
FDA3 Immune-GDE3  0.134456 +(8.7314E-3) N 0.111877 +(8.8516E-3) N 0.087729 +(6.0179E-3) N 0.104331 +(5.1049E-3) 4
MOEA/D-BR 0.163323  £(1.6654E-2) 0.150646  +(6.0251E-3) 0.134362  £(7.9978E-3) 0.139922  £(5.5347E-3)
UDF1 Immune-GDE3  0.126877 +(4.6714E-3) " 0.110879 +(5.5627E-3) i 0.097518 +(3.2627E-3) X 0.111225 =£(2.3434E-3) n
MOEA/D-BR 0.146588  +(8.0849E-3) 0.136125 +(3.3260E-3) 0.113874  +(2.5029E-3) 0.126736  +(5.5535E-3)
UDF2 Immune-GDE3  0.035197 £(1.2918E-3) _ 0.021089 +(5.8055E-3) 4 0.016623 +(3.6932E-3) i 0.021952  +(2.3790E-3) i
MOEA/D-BR 0.038836  £(6.9585E-4) —  0.042809 +(2.6436E-3) 0.031538  +(4.7244E-3) 0.037472 +(5.0232E-3)
UDF3 Immune-GDE3  0.313187  £(6.9004E-3) N 0.395608 +(9.0219E-3) N 0.212443  +(2.8595E-3) N 0.356359  +(1.2050E-2) I
MOEA/D-BR 0.428278  +(1.8934E-2) 0.456038  +(1.9513E-2) 0.411316  +(1.3250E-2) 0.414984  £(1.0310E-2)
UDF4 Immune-GDE3  0.208323 +(1.6900E-2) N 0.194531 +(1.5068E-2) ‘ 0.150834 +(1.8599E-3) X 0.192119  +(1.9370E-2) I
MOEA/D-BR 0.341806  +(2.3781E-2) 0.328705  £(1.7042E-2) 0.321557  £(2.0079E-2) 0.331420  +(2.1199E-2)
UDF5 Immune-GDE3 0.022426 +(7.9638E-4) _  0.020183 £(1.9755E-4) _  0.016473 +(3.1760E-3) n 0.019792 £(1.3847E-3) i
MOEA/D-BR 0.034523  £(1.5078E-3) —  0.029316  +(1.1285E-3) ~—  0.029786  =+(4.5544E-3) 0.034826  £(2.9085E-3)
UDF6 Immune-GDE3 1.261284  £(2.9028E-2)  1.206605 +(1.5330E-2) 4 0.992931 +(8.0603E-3) n 1.168535 +(1.0141E-2) 4
MOEA/D-BR 1.235593 +(2.0391E-2) ~ 1.222786  +(1.7668E-2) 1.184477  £(5.8419E-2) 1.226356  £(1.6007E-2)
UDF7 Immune-GDE3 ~ 0.215578 +(9.3813E-3) _  0.185661 =(1.3057E-2) N 0.172417 +(9.5688E-3) N 0.201356  +(4.8354E-3) 4
MOEA/D-BR 0.235467  £(9.4661E-3) —  0.222149  +(1.5211E-2) 0.209706  £(9.5929E-3) 0.227930  £(5.2235E-3)
UDF8 Immune-GDE3  0.399400 £(L1G39E-2)  0.205218 £(LOLO9E-3) 0217609 £(27210B2) 0.256169 £(20525E3)
MOEA/D-BR 0.467142  +(5.2666E-2) 0.417166  £(5.7478E-2) 0.358355  +(3.2235E-2) 0.412264  +(5.2692E-2)
UDF9 Immune-GDE3  0.119658 +(5.8976E-3) " 0.119730 +(5.3391E-3) 4 0.100523 +(6.2796E-3) 4 0.105342 +(5.0707E-3) i
MOEA/D-BR  0.141160  +(1.1506E-2) 0.163020  +(4.7898E-3) 0.138796  +(1.0648E-2) 0.150768  +(1.1389E-2)
Summary of Immune GDE3 + 7 11 12 12
the statistical vs - 0 0 0
test MOEA/D-BR = 5 1 0 0

i.e. the algorithm needs more time to converge to the Pareto optimal front. Ta-
ble 5.6 also included the results obtained from the configuration (n;=5, 7=5). As
it can be observed from the previous experiment, Immune GDE3 obtained better
results than MOEA /D-BR in most problems. However, the statistical test showed
that the behavior of both algorithms was similar in seven of twelve problems. The
results obtained with this experiment showed that Immune GDE3 was less sensitive
to the variation of the change severity and frequency parameters. In addition, the
performance of Immune GDE3 was better in comparison with MOEA /D-BR. The

Bonferroni-Dunn post-hoc test results confirm such findings.

For the Hypervolume results, the behavior of both algorithms in this experiment
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was very similar to that observed for the IGD results. Immune GDES3 obtained bet-
ter results in most test problems. The variation of problem parameters improved
the performance of Immune GDE3. In contrast, the results of MOEA/D-BR were
affected. Less severity and less frequent changes enhanced the performance of both
algorithms. However, the results obtained by MOEA /D-BR do not outperform Im-
mune GDE3 results. Analyzing more thoroughly the obtained results, from Table
5.7 it can also be observed that, for new configurations of frequencies and severities
in UDF4, UDF5, and UDF9 test problems, the statistical test showed that Immune
GDES3 results are not significantly different to MOEA /D-BR results. These test
problems are problems where both, Pareto optimal set and Pareto optimal front
changes. On the other hand, according to the Hypervolume metric results in test
problems UDF3, UDF6, and UDF7, Immune GDE3 obtained better results than
MOEA /D-BR when the Pareto optimal set does not change over time. Therefore,
one disadvantage of Immune GDE3 regarding proximity metrics is that its perfor-
mance tends to decrease when solving problems with changing Pareto optimal sets
(POSs) and with more than two objectives. Such behavior can occur in problems

where the severity of change is considerable, and the changes are very frequent.

Distribution metrics discussion

In spite of the variation of problem parameters, the results of distribution metrics
showed a better performance of Immune GDE3 in most test problems. In contrast
with proximity metrics, for both distribution metrics in configuration (n;=5, 7,=5),
the results obtained by Immune GDE3 were better than those of MOEA/D-BR.
According to the Spacing results, the variation of problem parameters also improved
significantly the performance of Immune GDE3. As it can be seen in Table 5.8, with
the exception of the first configuration, Immune GDES3 obtained significantly better
results with respect to MOEA/D-BR in all test problems, i.e., the distribution of
solutions of Immune GDE3 was better when the severity and frequency parameters
are changed.

As regards to the binary metric, C-metric measures the percentage of non-
dominated solutions in an algorithm with respect to another algorithm. The obtained

results suggested a good performance of both algorithms in the original configuration
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Table 5.7: HV mean and standard deviation values for all test problems over dif-
ferent configurations of problem parameters (n;, ;) and summary of Kruskal-Wallis

test and the Bergmann-Hommels post-hoc test.

“+” means that Immune GDE3

outperformed MOEA/D-BR. “-” means that MOEA/D-BR outperformed Immune
GDE3. No significant differences between Immune GDE3 and MOEA /D-BR are
indicated with “=". The best results are marked in boldface

Test Problem Algorithm (5,5) (5,10) (10,10) (10,5)
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.
FDA1 Immune-GDE3 ~ 0.947598 +(1.2433E-4) " 0.928808 +(2.2660E-2) _ 0.970845 =+(8.8909E-3) 4 0.960830 +(8.2739E-3) "
MOEA/D-BR 0.915952  +(1.8250E-2) 0.912243  £(9.3628E-3) ~  0.938588  =(1.3300E-2) 0.910441  £(1.0145E-2)
FDA2 Immune-GDE3  0.942487 +(1.2731E-2) _  0.963906 +(9.3028E-3) 4 0.979100 +£(9.9910E-3) 4 0.967054 +(1.6193E-2) "
MOEA/D-BR 0.934556  £(2.0434E-2) —  0.905675  £(2.5070E-2) 0.930355  £(1.4331E-2) 0.927364  +(2.2449E-2)
FDA3 Immune-GDE3 0.906268 +(1.3549E-2) 4 0.935259 +(1.1321E-2) n 0.963346 +(1.3653E-2) i 0.951589 +(1.5050E-2) i
MOEA/D-BR 0.887728  +(1.3071E-2) 0.876368 +(1.9911E-2) 0.898755 +(1.5213E-2) 0.884185 +(1.4845E-2)
UDF1 Immune-GDE3 ~ 0.923244 =£(1.3860E-2) _ 0.952185 +(.9927E-3) 0.969338 +(L3314E-2) 0.950051 (L5ISSE-2)
MOEA/D-BR 0.902568  +(1.3726E-2) —  0.895724  +(1.4137E-2) 0.907699  +(1.3394E-2) 0.893775  £(1.5449E-2)
UDF2 Immune-GDE3  0.975362 +(1.1036E-2) _  0.983420 +(8.2933E-3) 4 0.993274  +(3.1250E-3) 4 0.985798 +(5.7181E-3) 4
MOEA/D-BR 0.956223  £(8.2531E-3) —  0.943379  £(4.7765E-3) 0.950705  £(9.5585E-3) 0.947104  £(7.5593E-3)
UDF3 Imnmne-GDE3  0.898526 +(17168E-2) _ 0.944853 £(12774E-2)  0.960542 £(L1923E-2) 0.938894 £(1AIGSE2)
MOEA/D-BR 0.895563  £(1.0683E-2) — 0.897970  +(8.1838E-3) 0.910003  +(1.1155E-2) 0.885575  +(9.2959E-3)
UDF4 Immune-GDE3 ~ 0.934419  £(14374E-2) _ 0.945811 +(0.6780E-3)  0.972065 +(1.2397E-2)  0.951553 +(L09S2E-2)
MOEA/D-BR 0.902486  +£(1.5699E-2) —  0.889678  +(1.5807E-2) 0.915648  +(1.5669E-2) 0.894837  +(1.6574E-2)
UDF5 Immune-GDE3 ~ 0.983015 +(7.8875E-3) _  0.986187 =(4.0528E-3) " 0.994307 +(3.8465E-3) _ 0.994307 +(2.4172E-3) 4
MOEA/D-BR 0.972967  +(1.0906E-2) — 0.953340  +(1.0908E-2) 0.975223  £(8.5292E-3) 0.953644  =£(9.4308E-3)
UDF6 Immune-GDE3 ~ 0.868829 +(1.4723E-2) 0.934086 +(7.4488E-3) 4 0.952580 +(8.9889E-3) 4 0.935324 +(1.3588E-2) X
MOEA/D-BR 0.864445  £(2.5743E-2) —  0.864810  £(2.1600E-2) 0.889254  £(2.2972E-2) 0.861071  +(1.7646E-2)
UDF7 Immune-GDE3 0.901520 +(1.6464E-2) _  0.945925 =£(9.4995E-3) n 0.964274 +(8.5407E-3) i 0.942143 £(9.3416E-3) i
MOEA/D-BR 0.901212  £(1.7895E-2) — 0.881447  +(1.9348E-2) 0.904925 +(1.7147E-2) 0.883290  +(1.4403E-2)
UDF8 Immune-GDE3  0.903051  =+(4.4884E-3) + 0.936333 +(1.1041E-2) + 0.961585 +(6.2486E-3) 4 0.936436 =+(9.9165E-3) "
MOEA/D-BR 0.878897  +(6.9378E-3) 0.880893  +(1.7555E-2) 0.894767  +(1.3142E-2) 0.860880  +(1.4674E-2)
UDF9 Immune-GDE3 ~ 0.924763 +(1.4725E-2) _  0.952338 +(1.0925E-2) 4 0.968181 +(9.7412E-3) 4 0.901031  #(1.0209E-2)
MOEA/D-BR 0.921146  +(1.8088E-2) ~  0.893129  4(1.4687E-2) 0.919203  £(1.0137E-2) 0.903308 +£(1.1092E-2)
Summary of Immune-GDE3 + 3 11 11 11
the statistical vs - 0 0 0 0
test MOEA/D-BR = 9 1 1 1
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Table 5.8: S mean and standard deviation values for all test problems over different
configurations of problem parameters (n;, 7;) and summary of Kruskal-Wallis test
and the Bergmann-Hommels post-hoc test. “4+” means that Immune GDE3 outper-
formed MOEA /D-BR. “—" means that MOEA /D-BR outperformed Immune GDE3.
No significant differences between Immune GDE3 and MOEA /D-BR are indicated

with “=". The best results are marked in boldface

Test Problem Algorithm (5,5) (5,10) (10,10) (10,5)
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.
FDA1 Immune-GDE3 ~ 0.137552  £(1.2220E-2) _  0.025033 =£(6.4731E-3) " 0.017481 +(3.9889E-3) 4 0.050171 +(6.4195E-3) "
MOEA/D-BR 0.134540 £(9.9702E-3) —  0.099722  £(1.1576E-2) 0.045790  £(3.5958E-3) 0.092845  £(8.6534E-3)
FDA2 Immune-GDE3  0.043993  +(6.9097E-3) " 0.026975 +(9.4391E-3) 4 0.020736 +(6.5629E-3) 4 0.030845 +(5.7175E-3) "
MOEA/D-BR 0.085317  +(9.7344E-3) 0.080080  +(1.2033E-2) 0.061372  £(9.7295E-3) 0.064074  +(8.8591E-3)
FDA3 Immune-GDE3 0.142330 =+(5.4645E-3) 4 0.133573  +(9.0981E-3) n 0.065943 +(8.1560E-3) i 0.096434 +(8.6304E-3) i
MOEA/D-BR 0.205672  +(1.5007E-2) 0.173396 +(1.2050E-2) 0.147248  +(9.4471E-3) 0.160816  +(1.0114E-2)
UDF1 Immune-GDE3  0.088819 +£(8.4001E-3) 0.067456 +(9.6953E-3) + 0.030420 +(7.7871E-3) + 0.050265 =+(9.3228E-3) "
MOEA/D-BR 0.089691  +(1.3500E-2) — 0.075875  +(1.1019E-2) 0.069938  +(1.1472E-2) 0.100073  +(1.1170E-2)
UDF2 Immune-GDE3  0.024929 +(6.5317E-3) _ 0.020446 =+(5.2018E-3) 4 0.009071  +(7.7264E-4) 4 0.014738 +(3.0603E-3) 4
MOEA/D-BR 0.043629  £(1.5216E-2) —  0.030671  4(6.8962E-3) 0.023947  £(8.2712E-3) 0.020495  £(7.1050E-3)
UDF3 Imnmne-GDE3 0.115938  +(10428E-2)  0.082287 £(5.2074E-3)  0.064997 (7.1205E-3) 0.069602 £(G.8700E-3)
MOEA/D-BR  0.157694  +(5.6919E-3) 0131308  +(1.1971E-2) 0.105714  +(8.4053E-3) 0.130333  +(1.2652E-2)
UDF4 Immune-GDE3  0.091096 =+(1.0267E-2) + 0.073403 +(1.0969E-2) + 0.042969 +(8.4732E-3) " 0.052019 =+(6.3966E-3) "
MOEA/D-BR 0.171819  +(1.1848E-2) 0.150753 +(1.2261E-2) 0.106371 +(1.1433E-2) 0.121100  +(1.0974E-2)
UDF5 Immune-GDE3  0.024981  +(7.9183E-3) " 0.070373 +(1.1751E-2) " 0.041697 +(8.1481E-3) " 0.054058 +(7.3107E-3) n
MOEA/D-BR 0.083017  +(1.0824E-2) 0.151248  +(1.1783E-2) 0.106060  +(1.1248E-2) 0.118747  £(1.2771E-2)
UDF6 Immune-GDE3 ~ 0.089574 +(1.0217E-2) " 0.058960 +(1.2508E-2) 4 0.044052  £(9.6669E-3) 4 0.065002 +(8.7641E-3) "
MOEA/D-BR 0132454  +(1.5807E-2) 0111002 +(1.0324E-2) 0.000693  +(1.1628E-2) 0115420 +(1.4133E-2)
UDF7 Imnune-GDE3  0.117410 +(76001E-3)  0.074564 £(T.8061E-3)  0.058277 £(7.3233E-3) 0.067845 £(48613L3)
MOEA/D-BR 0.176457  +(1.4566E-2) 0.128057  +(1.1451E-2) 0.112580  +(1.3723E-2) 0.135562  +(1.2408E-2)
UDF8 Immune-GDE3  0.102524 +(1.0831E-2) + 0.066819 +(9.8009E-3) + 0.036642 +(7.9870E-3) 4 0.055002 =+(1.2664E-2) "
MOEA/D-BR 0.181500  +(2.4492E-2) 0.130808  +(1.2127E-2) 0.101421  +(1.5587E-2) 0.145612  +(1.2201E-2)
UDF9 Immune-GDE3  0.068341 +(1.3208E-2) " 0.050860 +(1.0565E-2) 4 0.020028 +(6.9827E-3) 4 0.044439 +(9.2070E-3) i
MOEA/D-BR 0.119138  £(1.0972E-2) 0.095114  +(1.1128E-2) 0.073072  +(1.3588E-2) 0.114383  £(1.2963E-2)
Summary of Immune-GDE3 + 9 12 12 12
the statistical vs - 0 0 0 0
test MOEA/D-BR = 3 0 0 0
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Table 5.9: C mean and standard deviation values for all test problems over different
configurations of problem parameters (n;, 7;) and summary of Kruskal-Wallis test
and the Bergmann-Hommels post-hoc test . “+” means that Immune GDE3 outper-
formed MOEA /D-BR. “—" means that MOEA /D-BR outperformed Immune GDE3.
No significant differences between Immune GDE3 and MOEA /D-BR are indicated
with “=". The best results are marked in boldface

Test Problem Algorithm (5,5) (5,10) (10,10) (10,5)
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.
FDAL1 Immune-GDE3 vs MOEA/D-BR  0.998172 +(4.4362E-4) _ 0.998864 +(2.8681E-4) 4 0.999527 +(2.1406E-4) + 0.999073  +(6.2261E-5) +
MOEA/D-BR vs Immune-GDE3  0.957717  £(2.7748E-3) ~  0.918381  =£(1.1195E-2) 0.924294  £(1.9926E-2) 0.886633  £(1.2974E-2)
FDA2 Immune-GDE3 vs MOEA/D-BR  0.993593  +(2.8622E-3) . 0.992464 +(1.3749E-3) N 0.998948  +(4.7650E-4) . 0.989350 +(6.1540E-4) N
MOEA/D-BR vs Immune-GDE3  0.878797  +(1.3513E-2) 0.920525  +(4.0009E-3) 0.917033  +(1.2609E-2) 0.890612  +(1.1278E-2)
FDA3 Immune-GDE3 vs MOEA/D-BR  0.975394 +(3.5148E-3) 4 0.982105 +(1.1593E-3) N 0.990654  +(4.5009E-3) 4 0.993083  +(2.3690E-3) n
MOEA/D-BR vs Immune-GDE3  0.800582  +(1.7528E-2) 0.806515  +(2.1632E-2) 0.840118  4(2.3950E-2) 0.816525  +(7.2115E-3)
UDF1 Immune-GDE3 vs MOEA/D-BR  0.994410 =(2.0067E-3) . 0.995974  +(1.3592E-3) N 0.997587 +(1.3556E-3) 4 0.997012  +£(9.9663E-4) n
MOEA/D-BR vs Immune-GDE3  0.823839  +(1.3659E-2) 0.816665  +(2.9042E-2) 0.854602  4(1.0090E-2) 0.792722  £(3.0194E-2)
UDF2 Immune-GDE3 vs MOEA/D-BR  0.985741 £(2.6844E-3) _ 0.992413 +(2.2375E-3) i 0.995233 +(2.1778E-3) i 0.987917 +(2.1424E-3) 4
MOEA/D-BR vs Immune-GDE3  0.962914  £(7.6618E-3) ~  0.822160  =(1.4852E-2) 0.856756  4(1.7087E-2) 0.786150  +(1.0563E-2)
UDF3 Immune-GDE3 vs MOEA/D-BR  0.987248 +(3.7431E-3)  0.990409 =£(3.3105E-4) _  0.099930 £(3.7802E-5) 0.993750 +(L4272E-3)
MOEA/D-BR vs Immune-GDE3  0.860455  +(9.6686E-3) 0.913036  +(1.0546E-2) 0.906851 +(2.0068E-2) 0.855270  +(9.2544E-3)
UDF4 Immune-GDE3 vs MOEA/D-BR  0.988880 =+(5.0691E-3) + 0.992855 +(1.5444E-3) + 0.998935 +(5.3612E-4) + 0.987561 +(1.8892E-3) +
MOEA/D-BR vs Immune-GDE3  0.773828  +(5.8370E-2) 0.779123  £(5.9639E-3) 0.811210  4(2.0083E-2) 0.784044  +(1.2012E-2)
UDF5 Immune-GDE3 vs MOEA/D-BR  0.961725 =(9.3726E-4) + 0.994973 +(1.7718E-3) + 0.997674 +(1.3696E-3) + 0.984572  +(1.1385E-3) +
MOEA/D-BR vs Immune-GDE3  0.892246  +(5.5369E-3) 0.842911  +(3.8983E-3) 0.891091  +(9.4304E-3) 0.893447  +£(5.0208E-3)
UDF6 Immune-GDE3 vs MOEA/D-BR  0.989206 =+(4.7177E-3) , 0.994297 +(2.1119E-3) ; 0.999658 +(2.0045E-4) ' 0.992869 +(2.3189E-3) ,
MOEA/D-BR vs Immune-GDE3  0.779203  +(1.4342E-2) 0.807311  +(4.3781E-2) 0.837987  +(3.5337E-2) 0.798030  +(1.9983E-2)
UDF7 Immune-GDE3 vs MOEA/D-BR  0.974187  £(2.2222E-3)  0.990862 =+(1.0140E-3) + 0.998881 +(3.4431E-4) + 0.994303 +(1.2911E-3) +
MOEA/D-BR vs Immune-GDE3  0.974815 +(2.5236E-3) ~ 0.902326  +(1.5909E-2) 0.892530  +(2.2927E-2) 0.870319  £(1.9367E-2)
UDF8 Immune-GDE3 vs MOEA/D-BR  0.983829  £(3.4514E-3) 0.986707 +(2.2274E-3) + 0.987418 +(1.6308E-3) 0.995063 +(1.4771E-3) +
MOEA/D-BR vs Immune-GDE3  0.985947 +(2.2279E-3) ~ 0.895627  +(1.5831E-2) 0985501  +(2.1721E-3) —  0.868734  £(1.7605E-2)
UDF9 Immune-GDE3 vs MOEA/D-BR  0.991359  +(8.6822E-4) + 0.994123 +(8.9832E-4) + 0.992920 +(2.8231E-3) + 0.981228 +(3.7699E-3) +
MOEA/D-BR vs Immune-GDE3  0.908888  +(6.3919E-3) 0.867226  +(3.8292E-3) 0.880611  +(6.0838E-3) 0.875512  +(3.3347E-3)
Summary of Immune-GDE3 + 8 12 11 12
the statistical vs - 0 0 0 0
test MOEA/D-BR = 4 0 1 0

of parameters (See Table 5.9). However, the percentage of non-dominated solutions
of Immune GDE3 always outperformed the results of MOEA/D-BR in the rest of
configurations. In contrast with the spacing metric, the results of MOEA /D-BR were
less competitive than Immune GDE3 results. The variation of change frequency and
change severity affects the performance of MOEA /D-BR significantly. In addition,
and in the same way of proximity results, for MOEA /D-BR it is more difficult to ob-
tain a better percentage of non-dominated solutions in the presence of many changes
in the environment. On the other hand, the performance of Immune GDE3 was not

affected when the severity of change was increased.

In order to visualize the algorithms’ tracking ability over the changing environ-

ments, Pareto-front plots of the two best algorithms over three representative test
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problems (FDA1, FDA2, and UDF2) are shown in Fig. 5.4. Each of the three prob-
lems selected represents a different type of DMOP, either type I, type III or type II,
respectively. Fig. 5.4 shows that Immune GDE3 is very capable of tracking envi-
ronmental changes, obtaining solutions with good distribution over the POF. Such

behavior confirms the obtained results by proximity and distribution metrics.

5.3.3 Results of Experiment 3: The role of immune response

Finally, the first part of the third experiment compared Immune GDE3 against
other versions of the GDE3 algorithm that use a different mechanism to react after
environmental changes. This part of the experiment was designed to analyze the
role of the immune response like change reaction mechanism within GDE3. As
it was mentioned before, three different mechanisms were selected to evaluate the
performance of the immune response. These mechanisms are the same mechanisms
implemented in the algorithms selected in experiment one. For comparison purposes,
the four metrics already used in the other two experiments were adopted here to
analyze the obtained behaviors. In the two previous experiments, the configuration
parameters (n;=5 and 7,=5) showed to add difficulty to the test problems. Due to
this reason, in the same way of the first experiment, the parameter configuration
n;=5 and 17,=5 was selected to compute the results of the algorithms used in this
third experiment.

Table 5.10 summarizes the obtained results by each algorithm in each test prob-
lem. At the end of the table, the results of the Bergmann-Hommels post-hoc test
are included. As it can be seen, similarly to the two previous experiments, Immune

version of GDE3 obtained good results in most test problems.

Proximity metrics discussion

Regarding the IGD metric, from Table 5.10, it can be seen that Immune GDE3
obtained better results in ten of the twelve test problems and such differences were
statistically validated. When Immune GDE3 was compared against GDE3-A, Im-
mune GDE3 was better in most test problems, with the exception of FDA2, where

the statistical test showed not significant difference between these two algorithms.
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Figure 5.4: Obtained POFs by the two best algorithms on three representative test

problems with n; = 10 and 7, = 10.
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Furthermore, when Immune GDE3 was compared against GDE3-B, Immune GDE3
outperformed GDE3-B in all test problems.

The prediction version of GDE3 (GDE3-BR) provided a different behavior with
respect to the other two GDE3 versions. GDE3-BR was more competitive than
GDE3-A and GDE3-B. However, the results obtained by GDE3-BR did not outper-
form those of Immune GDE3. The statistical test indicated that the performance of
Immune GDE3 was better in seven test problems and similar to GDE3-BR in the
remaining five.

As regards to HV, Immune GDE3 provided better results to those obtained by
GDE3-A in eleven test problems. Moreover, Immune GDE3 was better than GDE3-
B in all test problems and provided a similar performance as the observed for the
IGD metric, when it was compared with GDE3-BR. For this metric, the immune
response mechanism was more competitive in Type II and Type III problems, i.e.,

problems with changes in the POS and POF or changes only in POF.

Table 5.10: IGD, HV and S mean and standard deviation values for all test problems
on the third experiment and summary of Kruskal-Wallis test and the Bergmann-
Hommels post-hoc test. “+” means that Immune GDE3 outperformed the algorithm
in the corresponding row. “—” means that the algorithm in the corresponding row
outperformed Immune GDE3. No significant differences between Immune GDE3 and
the version in the corresponding row are indicated with “=". The best results are

marked in boldface

Test IGD HV S
Problem
Algorithm Mean St. dev. Mean St. dev. Mean St. dev.
Immune-GDE3 0.055062+(1.0464E-3) 0.947598+(1.2433E-4) 0.137552 +(1.2220E-2)
FDA1 GDE3-A 0.092881 +(8.0243E-3) + 0.871685 =+(1.8488E-2) + 0.163171 +(1.5182E-2) +
GDE3-B 0.112551 +(6.4481E-3) + 0.813126 £(2.1174E-2) + 0.185558 +(2.7120E-2) +
GDE3-BR 0.076914 +(9.7872E-3)  +  0.903858 +(1.4179E-2) +  0.123808+(1.0414E-2) =
Immune-GDE3 0.015333 +(2.4733E-3) 0.942487+(1.2731E-2) 0.043993+(6.9097E-3)
FDA2 GDE3-A 0.017761 +(1.0292E-3) =  0.905606 =+(1.3413E-2) +  0.094181 +(8.5774E-3) +
GDE3-B 0.024153 +£(2.6093E-3) -+ 0.895457 +(1.6187E-2) + 0.111749 +(9.9340E-3) +
GDE3-BR 0.014908+(1.9716E-3) = 0.925525 +(9.3340E-3) = 0.086791 +(4.6064E-3) +
Immune-GDE3 0.134456 1+(8.7314E-3) 0.906268+(1.3549E-2) 0.142330+(5.4645E-3)
FDA3 GDE3-A 0.188140 +(1.3340E-2) =+ 0.883443 +(1.2732E-2) = 0.227166 +(1.6766E-2) +
GDE3-B 0.192935 +£(1.3632E-2) + 0.850149 +(1.5455E-2) + 0.252608 +(1.4645E-2) +
GDE3-BR 0.152803 +(1.2208E-2) = 0.876620 +(1.3360E-2) + 0.191743 £(1.1709E-2) +
Immune-GDE3 0.1268771(4.6714E-3) 0.923244+(1.3869E-2) 0.088819+(8.4001E-3)
UDF1 GDE3-A 0.163256 +(9.9488E-3) + 0.850475 +(9.1815E-3) + 0.123365 +(1.0451E-2) +
GDE3-B 0.181585 +(1.6598E-2) + 0.845393 +(9.0315E-3) + 0.125337 +(1.9746E-2) +
GDE3-BR 0.160167 +(1.1402E-2) -+ 0.906104 +(1.4060E-2) = 0.123690 +(8.8349E-3) +
Immune-GDE3 0.035197+(1.2918E-3) 0.975362+(1.1036E-2) 0.024929+(6.5317E-3)
UDF2 GDE3-A 0.063155 +(9.9167E-3) + 0.906550 +(2.1470E-2) + 0.082639 +(1.6363E-2) +
GDE3-B 0.069553 +(7.4715E-3) + 0.901151 +(1.7944E-2) + 0.123219 +(9.1922E-3) +

Continued on next page
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Table 5.10 Continued from previous page

Test IGD HV S

Problem
GDE3-BR 0.038409 +(7.3735E-4) = 0.900431 +£(2.2435E-2) + 0.070547 £(1.2376E-2) +
Immune-GDE3 0.3131871(6.9004E-3) 0.898526+(1.7168E-2) 0.115938+(1.0428E-2)

UDF3 GDE3-A 0.462604 +(1.3399E-2) + 0.854321 +(4.6096E-3) + 0.155045 +(1.2896E-2) +
GDE3-B 0.486240 +(1.4030E-2) + 0.856425 +(8.2676E-3) + 0.200869 +(1.1406E-2) +
GDE3-BR 0.446327 £(9.1276E-3) + 0.885519 +(1.3592E-2) = 0.175363 +(3.2044E-3) +
Immune-GDE3 0.208323+(1.6900E-2) 0.934419+(1.4374E-2) 0.091096 +(1.0267E-2)

UDF4 GDE3-A 0.314340 +(1.5834E-2) + 0.842836 +(1.4427E-2) + 0.141395 +(9.9958E-3) +
GDE3-B 0.337127 +(2.6497E-2) + 0.848353 +£(1.6500E-2) + 0.182133 £(1.1223E-2) +
GDE3-BR 0.274149 4(9.4875E-3) + 0.886287 +(1.3950E-2) + 0.131155 +(5.3718E-3) +
Immune-GDE3 0.0224261(7.9638E-4) 0.983015+(7.8875E-3) 0.024981 +(7.9183E-3)

UDF5 GDE3-A 0.060463 +(6.2296E-3) —+ 0.916603 +(1.1412E-2) + 0.103387 £(1.1161E-2) +
GDE3-B 0.050155 +(7.9648E-5) -+ 0.895093 +(9.4002E-3) + 0.131687 +(2.3963E-3) +
GDE3-BR 0.031787 +(1.2490E-3) = 0.928299 +(1.5916E-2) + 0.054946 +(2.7425E-3) +
Immune-GDE3 1.2612844(2.9028E-2) 0.868829+(1.4723E-2) 0.089574+(1.0217E-2)

UDF6 GDE3-A 1.450378 +(3.8378E-2) + 0.840490 +(2.1643E-2) + 0.166448 +(1.1814E-2) +
GDE3-B 1.483274 +(4.7225E-2) + 0.811160 +(1.5105E-2) + 0.204857 +(7.8698E-3) +
GDE3-BR 1.355084 =+(2.1906E-2) + 0.879177 +£(2.9863E-2) = 0.110381 +(1.2824E-2) +
Immune-GDE3 0.215578 +(9.3813E-3) 0.901520+(1.6464E-2) 0.117410+(7.6001E-3)

UDF7 GDE3-A 0.275805 +(1.1373E-2) + 0.841745 +(1.0698E-2) + 0.201810 +(1.4068E-2) +
GDE3-B 0.353933 +(3.0801E-2) + 0.829512 +(1.3720E-2) + 0.214499 +£(1.0275E-2) +
GDE3-BR 0.210719+(1.4540E-2) = 0.845727 +(1.2964E-2) + 0.170541 +(5.6473E-3) +
Immune-GDE3 0.399400+(1.1659E-2) 0.903051 +(4.4884E-3) 0.102524 +(1.0831E-2)

UDF8 GDE3-A 0.527552 +(2.2211E-2) + 0.854339 +(1.1234E-2) + 0.202146 +(1.0131E-2) +
GDE3-B 0.553863 +(2.4636E-2) + 0.843285 +(1.4723E-2) + 0.200871 +(1.1308E-2) +
GDE3-BR 0.448665 +(1.8965E-2) +  0.861648 +(1.6859E-2) 4+  0.145741 +(1.1042E-2)  +
Immune-GDE3 0.119658+(5.8976E-3) 0.924763+(1.4725E-2) 0.068341+(1.3208E-2)

UDF9 GDE3-A 0.169351 +(1.1650E-2) + 0.893263 +£(1.4521E-2) + 0.202146 +(1.0131E-2) +
GDE3-B 0.181014 +(1.0395E-2) =+ 0.856388 +(1.6960E-2) + 0.237909 +(1.9791E-2) +
GDE3-BR 0.153902 +(9.5809E-3) + 0.879565 +(2.0215E-2) + 0.116522 +(8.0706E-3) +

Summary of the statistical test + = + = + =

Immune GDE3-A 11 1 11 1 12 0

GDE3 GDE3-B 12 0 12 0 12 0
GDE3-BR 7 5 8 4 11 1

Distribution metrics discussion

For distribution metrics, Immune GDE3 improved its performance significantly. Re-

garding the spacing metric, Immune GDE3 was better in all test problems when it
was compared with GDE3-A and GDE3-B algorithms, and outperformed GDE3-BR

in eleven of twelve problems. The statistical test confirms such finding. The re-

sults of the binary metric confirms the spacing results (See Table 5.11). C-metric

also showed that Immune GDE3 had a better performance than the rest of the al-

gorithms. The statistical results of each algorithm also showed that the Immune

version obtained a higher percentage of non-dominated solutions in comparison with

the rest of the algorithms and it was more robust over all the executions.
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Table 5.11: C mean and standard deviation values for all test problems on the
third experiment and summary of Kruskal-Wallis test and the Bergmann-Hommels
post-hoc test. “+4” means that Immune GDE3 outperformed the algorithm in the
corresponding row. “—” means that the algorithm in the corresponding row out-
performed Immune GDE3. No significant differences between Immune GDE3 and
the version in the corresponding row are indicated with “=". The best results are

marked in boldface

Test Problem Algorithm comparison Mean St. Dev.

FDA1 Immune-GDE3 vs GDE3-A 0.994390 +(2.4998E-3)
GDE3-A vs Immune-GDE3 0.551367 +(5.5330E-3) +
Immune-GDE3 vs GDE3-B 0.996380 +(1.4650E-3)
GDE3-B vs Immune-GDE3 0.395684 +(1.4470E-2) +
Immune-GDE3 vs GDE3-BR 0.995921 +(1.5127E-3)
GDE3-BR vs Immune-GDE3 0.888748 +(1.8555E-2) +

FDA2 Immune-GDE3 vs GDE3-A 0.999069 +(6.1445E-5)
GDE3-A vs Immune-GDE3 0.361984 +(1.2091E-2) +
Immune-GDE3 vs GDE3-B 0.998672 +(7.0641E-4)
GDE3-B vs Immune-GDE3 0.253101 +(2.3331E-2) +
Immune-GDE3 vs GDE3-BR 0.997380 +(5.1268E-4)
GDE3-BR vs Immune-GDE3 0.745288 +(7.4976E-3) +

FDA3 Immune-GDE3 vs GDE3-A 0.932456 +(2.1754E-2)
GDE3-A vs Immune-GDE3 0.462439 +(2.1084E-2) +
Immune-GDE3 vs GDE3-B 0.940666 +(1.1722E-2)
GDE3-B vs Immune-GDE3 0.339451 +(1.5392E-2) +
Immune-GDE3 vs GDE3-BR 0.991728 +(9.1912E-4)
GDE3-BR vs Immune-GDE3 0.919124 +(1.8452E-2) +

UDF1 Immune-GDE3 vs GDE3-A 0.897844 +(8.8375E-3)
GDE3-A vs Immune-GDE3 0.501080 +(9.8546E-3) +
Immune-GDE3 vs GDE3-B 0.913676 +(1.4559E-2)
GDE3-B vs Immune-GDE3 0.499546 +(2.5266E-2) +
Immune-GDE3 vs GDE3-BR 0.951048 +(1.0765E-2)
GDE3-BR vs Immune-GDE3 0.899346 +(1.3246E-2) +

UDF2 Immune-GDE3 vs GDE3-A 0.919108 +(1.0620E-2)
GDES3-A vs Immune-GDE3 0.449362 +(1.1093E-2) +
Immune-GDE3 vs GDE3-B 0.958826 +(1.3780E-2)
GDE3-B vs Immune-GDE3 0.412067 +(2.6819E-2) +
Immune-GDE3 vs GDE3-BR 0.952785 +(1.1656E-2)
GDE3-BR vs Immune-GDE3 0.860022 +(1.1328E-2) +

UDF3 Immune-GDE3 vs GDE3-A 0.981287 +(4.2563E-3)
GDE3-A vs Immune-GDE3 0.315093 +(1.5295E-2) +
Immune-GDE3 vs GDE3-B 0.993651 +(2.6273E-3)
GDE3-B vs Immune-GDE3 0.300662 +(1.1365E-2) +
Immune-GDE3 vs GDE3-BR 0.962160 +(8.6604E-3)
GDE3-BR vs Immune-GDE3 0.865029 +(1.2886E-2) +

UDF4 Immune-GDE3 vs GDE3-A 0.878638 +(1.1841E-2)
GDE3-A vs Immune-GDE3 0.592988 +(1.6434E-2) +
Immune-GDE3 vs GDE3-B 0.894711 +(1.3125E-2)
GDE3-B vs Immune-GDE3 0.515567 +(1.1246E-2) +
Immune-GDE3 vs GDE3-BR 0.899259 +(8.5955E-3)
GDE3-BR vs Immune-GDE3 0.862596 +(1.9793E-2) +

UDF5 Immune-GDE3 vs GDE3-A 0.937271 +(7.8036E-3)
GDE3-A vs Immune-GDE3 0.543775 +(1.8013E-2) +
Immune-GDE3 vs GDE3-B 0.915532 +(1.3661E-2)
GDE3-B vs Immune-GDE3 0.537808 +(3.2329E-2) +
Immune-GDE3 vs GDE3-BR 0.907041 +(1.4571E-2)
GDE3-BR vs Immune-GDE3 0.814343 +(1.1252E-2) +

UDF6 Immune-GDE3 vs GDE3-A 0.975434 +(7.4323E-3)
GDE3-A vs Immune-GDE3 0.453048 +(9.4770E-3) +
Immune-GDE3 vs GDE3-B 0.958279 +(1.1995E-2) ,

Continued on next page
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Table 5.11 Continued from previous page

Test Problem Algorithm comparison Mean St. Dev.
GDE3-B vs Immune-GDE3 0.417398 +(1.6414E-2)
Immune-GDE3 vs GDE3-BR 0.968249 +(1.0679E-2)
GDE3-BR vs Immune-GDE3 0.827830 +(9.6023E-3) +

UDF7 Immune-GDE3 vs GDE3-A 0.990972 +(2.1847E-3)
GDE3-A vs Immune-GDE3 0.390610 +(1.5843E-2) +
Immune-GDE3 vs GDE3-B 0.958845 +(1.0558E-2)
GDE3-B vs Immune-GDE3 0.408314 +(1.0560E-2) +
Immune-GDE3 vs GDE3-BR 0.971797 +(7.7882E-3)
GDE3-BR vs Immune-GDE3 0.820085 +(1.5704E-2) +

UDF8 Immune-GDE3 vs GDE3-A 0.907991 +(4.5679E-3)
GDE3-A vs Immune-GDE3 0.314790 +(1.7426E-2) +
Immune-GDE3 vs GDE3-B 0.930182 +(1.6492E-2)
GDE3-B vs Immune-GDE3 0.253717 +(1.2210E-2) +
Immune-GDE3 vs GDE3-BR 0.892362 +(1.6992E-2)
GDE3-BR vs Immune-GDE3 0.819519 +(9.8680E-3) +

UDF9 Immune-GDE3 vs GDE3-A 0.929208 +(2.5293E-2)
GDE3-A vs Immune-GDE3 0.435045 +(2.0088E-2) +
Immune-GDE3 vs GDE3-B 0.925090 +(2.5217E-2)
GDE3-B vs Immune-GDE3 0.461559 +(1.5869E-2) +
Immune-GDE3 vs GDE3-BR 0.955251 +(6.9224E-3) 4

GDE3-BR vs Immune-GDE3 0.877668 +(8.7088E-3)

Results of experiment three: Second part

Regarding the second part of experiment three, from experiment one, it was observed
that the two dynamic versions of the DNSGA-II algorithm were the less competitive
solving the test problems. Therefore, both, DNSGA-II-A and DNSGA-II-B were
selected for comparison purposes and the immune response of Immune GDE3 was
added to the original NSGA-II algorithm in order to evaluate the role of the immune
response in the improvement capability of such algorithm. In Tables 5.12 and 5.13,

the results obtained by each metric are presented.

Table 5.12: IGD, HV and S mean and standard deviation values for all test problems
on the second part of the third experiment and summary of Kruskal-Wallis test
and the Bergmann-Hommels post-hoc test. “+” means that Immune DNSGA-II
outperformed the algorithm in the corresponding row. “—” means that the algorithm
in the corresponding row outperformed Immune DNSGA-II. No significant differences
between Immune DNSGA-IT and the version in the corresponding row are indicated

with “=". The best results are marked in boldface
Test IGD HV S
Problem
Algorithm Mean St. Dev. Mean St. Dev. Mean St. Dev.
DNSGA-II-A 0.120843 +£(9.1590E-3) -+ 0.826732 +£(1.3890E-2) -+ 0.184589 +(2.8821E-2) +
FDA1 DNSGA-II-B 0.120395 +(8.1615E-3) + 0.841526 +(2.0022E-2) + 0.199440 +(3.6756E-2) +

Continued on next page
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Table 5.12 Continued from previous page

Test IGD HV S
Problem
Immune DNSGA-II 0.096054 +(4.2226E-3) 0.875366 £ (1.8750E-3) 0.160803+(5.3929E-3)
DNSGA-II-A 0.027240 +(3.1655E-3) = 0.897290 +£(1.8394E-2) = 0.091746 £(2.9774E-2) =
FDA2 DNSGA-II-B 0.026041 +(3.9815E-3) = 0.889673 +(1.9928E-2) + 0.090280 +(3.7050E-2) =
Immune DNSGA-II 0.023510+£(7.5902E-3) 0.902999+(8.9232E-3) 0.086640+(2.4794E-3)
DNSGA-II-A 0.196840 +£(2.6509E-2) + 0.847181 +(1.4987E-2) + 0.259114 +(1.6295E-2) +
FDA3 DNSGA-II-B 0.182420 +£(2.0071E-2) = 0.850735 +(2.0319E-2) = 0.259560 +(3.1350E-2) +
Immune DNSGA-II 0.163086 1+(6.8267E-3) 0.864146+(4.7337E-3) 0.202834+(5.7269E-3)
DNSGA-II-A 0.190081 +(2.5501E-2) + 0.861455 +(1.2560E-2) + 0.133088 +(1.3565E-2) +
UDF1 DNSGA-II-B 0.176580 +£(2.4053E-2) = 0.846510 £(2.0782E-2) + 0.122636 +(2.6779E-2) =
Immune DNSGA-II 0.167543+(5.7238E-3) 0.880600+(1.0391E-2) 0.114682+(2.7917E-3)
DNSGA-II-A 0.057697 +(2.6110E-4) + 0.868180 +(7.5739E-3) + 0.136798 +(1.1456E-2) +
UDF2 DNSGA-II-B 0.055472 +£(1.1405E-3) + 0.900560+(5.4139E-3) = 0.134370 £(1.6419E-2) +
Immune DNSGA-II 0.044413+(2.7835E-3) 0.899551 +(9.1902E-3) 0.108414+(5.6335E-3)
DNSGA-II-A 0.650578 +(4.4689E-3) + 0.848921 +(1.1309E-2) + 0.232095 +(1.6955E-2) +
UDF3 DNSGA-II-B 0.619635 +£(3.6366E-3) + 0.880210 =+(1.8489E-2) = 0.222228 +(8.4713E-3) +
Immune DNSGA-II 0.501796 £(6.3162E-3) 0.886490+(2.9400E-3) 0.183815+(7.3217E-3)
DNSGA-II-A 0.586730 £(1.4736E-2) + 0.871692 +£(1.5132E-2) = 0.232770 +(8.9446E-3) +
UDF4 DNSGA-II-B 0.559040 +(2.0006E-2) + 0.861425 +(9.9539E-3) + 0.236598 +(1.1837E-2) +
Immune DNSGA-II 0.500398 £ (8.4876E-3) 0.894535+(1.1690E-2) 0.187338+(6.6042E-3)
DNSGA-II-A 0.044145+(1.8135E-3) + 0.853131 +(1.4637E-2) + 0.120825 +(5.4924E-3) =
UDF5 DNSGA-II-B 0.048279 +(1.4589E-3) + 0.867340 +(9.8722E-3) + 0.138510 +(9.0072E-3) +
Immune DNSGA-II 0.027398 +(2.2582E-3) 0.890816+(7.1747E-3) 0.102585+(5.6493E-3)
DNSGA-II-A 1.539477 +(3.9231E-2) + 0.769060 =+(1.3840E-2) + 0.199890 +(9.9754E-3) +
UDF6 DNSGA-II-B 1.614060 +(5.0917E-2) + 0.762134 +£(1.6744E-2) + 0.199513 +£(5.1329E-3) +
Immune DNSGA-II 1.370507 £ (2.7627E-2) 0.833734+(6.4772E-3) 0.170140+(1.7153E-3)
DNSGA-II-A 0.625160 +(3.5058E-2) + 0.821780 +(1.5377E-2) + 0.228400 +(1.3060E-2) +
UDF7 DNSGA-II-B 0.680596 +£(3.7617E-2) + 0.822403 +£(2.2981E-2) + 0.246178 =£(9.2607E-3) +
Immune DNSGA-II 0.552439+(1.1320E-2) 0.845524+(5.7777E-3) 0.202311+(3.1198E-3)
DNSGA-II-A 0.604487 +(4.5989E-2) + 0.825920 +(1.2795E-2) = 0.223656 +(1.4291E-2) =
UDF8 DNSGA-II-B 0.623623 +£(2.2379E-2) + 0.808660 +(1.6419E-2) + 0.256730 =£(1.3008E-2) +
Immune DNSGA-II 0.514712+(1.5054E-2) 0.843417+(3.7189E-3) 0.207686 £ (6.3454E-3)
DNSGA-II-A 0.239630 +£(2.2069E-2) + 0.846251 +(1.7802E-2) + 0.254158 +(1.1683E-2) +
UDF9 DNSGA-II-B 0.237603 +(2.3084E-2) + 0.847240 +(1.2931E-2) + 0.218070 +(1.5518E-2) +

Immune DNSGA-IT

o

.187841+(6.7872E-3)

o

.8632821(5.0849E-3)

0.171116+(4.1945E-3)

Summary of the statistical test + = —+ = —+ =
Immune DNSGA-II-A 11 1 9 3 9 3
DNSGA-II DNSGA-II-B 9 3 3 10 2

Table 5.13: C mean and standard deviation values for all test problems on the
second part of the third experiment and summary of Kruskal-Wallis test and the

Bergmann-Hommels post-hoc test.
formed the algorithm in the corresponding row.

"

“4+” means that Immune DNSGA-II outper-
means that the algorithm in

the corresponding row outperformed Immune DNSGA-II. No significant differences
between Immune DNSGA-II and the version in the corresponding row are indicated
with “=". The best results are marked in boldface

Test Problem Algorithm comparison Mean St. Dev.
FDA1 Immune DNSGA-IT vs DNSGA-II-A 0.898187 +(1.0735E-3)
DNSGA-II-A vs Immune DNSGA-II 0.821892 +(1.0111E-2) +
Immune DNSGA-II vs DNSGA-II-B 0.901603 +(1.2007E-3)
DNSGA-II-B vs Immune DNSGA-II 0.801082 +(2.9748E-2) +

Continued on next page
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Table 5.13 Continued from previous page

Test Problem

Algorithm comparison

Mean

St. Dev.

FDA2

FDA3

UDF1

UDF2

UDF3

UDF4

UDF5

UDF6

UDF7

UDFS8

UDF9

Immune DNSGA-II vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-II vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-II vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-IT vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-IT vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-IT vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-II vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-II vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-II vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-IT vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

Immune DNSGA-II vs DNSGA-II-A
DNSGA-II-A vs Immune DNSGA-II
Immune DNSGA-II vs DNSGA-II-B
DNSGA-II-B vs Immune DNSGA-II

0.920360
0.830184
0.882176
0.820716

0.930168
0.840176
0.891020
0.850163

0.830164
0.720174
0.810748
0.780166

0.801636
0.781037
0.796018
0.802073

0.901917
0.691874
0.879176
0.701992

0.850173
0.790827
0.878468
0.801645

0.800183
0.770174
0.830846
0.793684

0.930178
0.689319
0.940183
0.599188

0.801836
0.769982
0.840177
0.670948

0.791837
0.690197
0.810081
0.640174

0.800187
0.740199
0.790185
0.680174

+(1.4240E-3)
+(1.9685E-3)
+(2.0748E-3)
+(1.9373E-2)

+(9.0167E-3)
+(1.9064E-2)
+(2.9619E-2)
+(1.0729E-2)

+(5.1974E-3)
+(3.7468E-3)
+(2.0174E-2)
+(1.0732E-2)

+(1.0620E-2)
+(1.1093E-2)
+(1.2603E-3)
+(2.7136E-2)

+(1.6478E-3)
+(2.2965E-2)
+(1.0539E-3)
+(1.7017E-2)

+(3.7174E-3)
+(6.0178E-3)
+(1.2897E-2)
+(1.0737E-2)

+(7.0354E-3)
+(2.5213E-2)
+(1.2986E-2)
+(2.2268E-2)

+(2.4736E-3)
+(4.2678E-3)
+(1.3023E-3)
+(1.1501E-2)

+(2.1031E-3)
+(1.5114E-2)
+(1.0312E-2)
+(1.7693E-2)

+(1.9164E-3)
+(1.7163E-2)
+(1.1328E-2)
+(1.3096E-2)

+(2.1211E-2)
+(2.5253E-2)
+(7.3950E-2)
+(4.5443E-2)

From Tables 5.12 and 5.13 it was observed that the new version of the NSGA-II
algorithm called Immune DNSGA-II obtained the best results in all performance
metrics when it was compared against DNSGA-II-A and DNSGA-II-B algorithms.
Regarding IGD metric, it can also be seen that Immune DNSGA-II was better
than DNSGA-II-A and DNSGA-II-B in the most test problems. However, Immune
DNSGA-II improved its performance when it was compared with DNSGA-II-A.
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On the other hand, the statistical results of the HV metric showed that Immune
DNSGA-II was the best algorithm in nine of twelve test problems independently of
the DNSGA version compared.

As regards to distribution metrics, the obtained results also showed that Immune
DNSGA-II outperformed the other algorithms in the most test problems. The results
obtained by S metric showed that Immune DNSGA-II obtained a better distribution
of solutions in ten of twelve test problems when comparing it with DNSGA-II-B.
From Table 5.13 it can be observed that regarding the C-metric, Immune DNSGA-
IT improved its performance significantly, i.e., it obtained a higher percentage of
non-dominated solutions than the other algorithms.

The results obtained by this experiment showed that the proposed immune re-
sponse has an important role as a change reaction mechanism. For such reason, the
DNSGA-II algorithm improves significantly its performance when its original change
reaction mechanisms were replaced by the immune response. However, despite the

good performance of Immune DNSGA-II, it does not outperform Immune GDE3.

5.4 Summary

This chapter presented a DMOEA called Immune GDE3 which uses the GDE3 al-
gorithm as a MOP optimizer. The change reaction mechanism in Immune GDE3
consists of an immune response based on clonal selection principle which has the
main role in Immune GDE3 to track the changing POFs.

Furthermore, in this chapter, the empirical validation of Immune GDE3 was
also presented. For this validation, three different experiments were designed. The
first one evaluated the performance of Immune GDE3 against other state-of-the-art
DMOEAs; the second experiment consisted of a sensitivity analysis, where different
combinations of change severities and change frequencies were selected to analyze
the performance of Immune GDE3. Finally, the third experiment was designed
to evaluate the role of the immune response in Immune GDE3 algorithm to solve
DMOPs.

The experiments were carried out on a set of well-known benchmark problems

and four performance metrics were used to assess the performance of the algorithms
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used in each experiment. Those performance metrics were: Inverted Generational
Distance, Hypervolume, Spacing and Two-set-coverage.

The experiments carried out showed that Immune GDE3 is a very competitive
algorithm solving DMOPs and this good performance is mainly attributed to its
change reaction mechanism based on an immune response.

The next chapter presents the proposal of another DMOEA called DIGDE which

is an improved version of Immune GDE3 and it is based on the Inverted Generational

Distance metric.



Chapter 6

An improved Immune GDE3
based on the IGD indicator

In the previous chapter, an Immune Generalized Differential Evolution, which is
based on the GDE3 algorithm and incorporates an Immune response as change re-
action mechanism was presented. The resulting Immune GDE3 was found to be a
competitive DMOEA compared with other popular DMOEAs on the adopted test

problems.

An important component of MOEAS is their survival selection mechanism, be-
cause its main role is to determine the quality of the candidate solutions that are
able to survive at each generation. Different survival selection mechanisms have
been designed based on different selection criteria, being the most popular the use
of Pareto-based selection (mainly through the use of some Pareto ranking scheme
120]).

As was observed in Section 3.5, several performance metrics have been proposed
to evaluate and compare the performance of MOEAs. However, in the last few years,
the use of performance metrics to guide the search of a MOEA has also been a recent
trend in the design of new MOEAs [7, 50]. Even though different works regarding
MOEAs based on performance metrics or indicators have been proposed for static
multi-objective optimization (see Section 3.3), to the best of the author’s knowledge,
there is not any DMOEA which uses a performance metric to guide the search

in dynamic multi-objective optimization. Therefore, in this chapter, an improved

110
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version of Immune GDE3, namely Distance-based Immune Generalized Differential
Evolution (DIGDE), which is based on Inverted Generational Distance is proposed,

and its empirical validation is carried out.

6.1 IGD indicator

Inverted Generational Distance (IGD) is one of the most representative performance
metrics used in multi-objective optimization to evaluate the quality of solution set
obtained by a MOEA regarding convergence and diversity [99]. To compute IGD,
it requires a set of uniformly distributed reference points sampled from the Pareto
optimal front (POF) as a priori knowledge. Let N be a set of uniformly distributed
points in the Pareto optimal front, and d; is the Euclidean distance between the ith
solution member in the Pareto optimal front and its nearest member of an analyzed
algorithm (POF*). The IGD is calculated as in Equation 6.1:

n g2
IGD = ¥Y==1 ¢ (6.1)
n

IGD obtains an average minimum distance from each point in POF to those in
POF*, which measures not only convergence but also the diversity of solution set
POF* [99]. As it can be seen in the definition of IGD previously described, the
IGD value is obtained by computing the mean of the Euclidean distances between
elements of the Pareto optimal front (POF) and elements of the POF*. However, in
the calculation of IGD, it is often observed that only the solutions of POF* which
are closest to at least one solution of POF are considered by the IGD indicator.
Therefore, some solutions of POF* could not contribute to the value of this indicator
while other solutions can have several contributions. Those solutions that do not have
any contribution to the IGD value are usually known as non-contributing solutions.

Consequently, a non-contributing solution to IGD indicator can be defined as follows:

Let POF be a set of all solutions that are uniformly sampled on the Pareto
optimal front. A solution s* is considered to be non-contributing solution in set
POF* for a given POF if the following condition is satisfied:
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Ar € POF :d(z,s") = min d(zx,s) (6.2)

s€POF*

where d is the Euclidean distance between two points. Therefore, the non-
contributing solutions are the solutions which are not nearest neighbor of any point
in POF.

Since the Pareto optimal front is usually unknown a priori, an approximation
must be constructed to be used as the reference set for the IGD calculations. There
are several methods available for building the reference set. One of them consists
in using external archives (memory), which store a set of non-dominated solutions
with the best convergence and diversity found so far [67, 90]. Since Immune GDE3
uses a memory to store the best solutions obtained through the optimization process,
such non-dominated solutions were used as the reference set for computing the IGD

indicator.

6.2 Distance-based Immune Generalized Differen-

tial Evolution

The aim of the new proposed approach consists in designing an improved version
of Immune GDE3 which attempts to minimize the IGD indicator in order to ob-
tain a competitive DMOEA that it would be able to provide solutions with good
distribution and as close as possible to the Pareto optimal front.

Immune GDE3 [66] is a DMOP with three main components to deal with changes
in the environment: (1) a reevaluation solution method as change detection mecha-
nism, (2) an immune response to respond to changes in the environment and (3) a
multi-objective optimization algorithm: GDE3 [58] which is an extension of Differ-
ential Evolution (DE) to solve MOPs with constraints.

Crowding distance and Non-dominated concepts are also a fundamental part of
Immune GDE3 algorithm. The dominance relations are used in the (141)-selection
mechanism. Crowding distance and Non-dominated Sorting are used as environmen-
tal selection mechanism to reduce the population size to its original size.

Taking as reference the original Immune GDE3, the Distance-based Immune
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Generalized Differential Evolution algorithm is proposed. The main idea of DIGDE
consists of eliminating the candidate solutions that have the least contribution to
the IGD metric value in the population by modifying mainly the Survival Selection
mechanism of the Immune GDE3 algorithm.

The basic framework of the proposed approach based on IGD metric, denoted
as DIGDE is shown in Algorithm 6. DIGDE starts with an initial population P
randomly initialized. Then the objective values are computed for all the solutions.
In every generation, DIGDE uses the change detection mechanism of Immune GDE3
to detected changes in the environment. If a change is detected, a change reaction
mechanism is carried out. Otherwise, the optimization process continues its normal
operation as the same way of GDE3 algorithm. After that, the offspring generation is
performed to produce a population of offspring (/N). Finally, at the end of each gen-
eration, the offspring population (N) and the current population (P) are combined,
and an environmental selection mechanism is applied on the combined population
in order to preserve good solutions for the next generation. The implementation of

each component of DIGDE is explained below:

6.2.1 Dynamism handling

The dynamism handling in DIGDE is based on the change detection and change
reaction mechanisms used in Immune GDE3. It is worth remarking that the imple-
mentation of those components is the same of the original algorithm (See Sections
5.1.1 and 5.1.2).

6.2.2 Offspring generation

The offspring generation of Immune GDE3 and DIDGE are inspired by DE opera-
tors (DE/rand/1/bin variant) [88]. For this reason, both generate multiple search
directions based on the distribution of solutions (vectors) in the current population.
In order to determine which individuals will take part in the offspring generation, a
selection mechanism is applied. Selection is also used to determine which individuals
will survive for next generations.

In DIGDE, the solutions (vectors) for offspring generation are randomly selected
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Algorithm 6 Framework of DIGDE

1: Input: n(number of variables of the problem), G4, (maximum number of genera-

tions), NP (population size), CR, F, and initial bounds zlo)  z(h)

2: Output: a series of approximated POFs
3: Set time t=0;
4: Generate a initial population P := {z1,...,znp};
5: Evaluate the initial population;
6: Copy the non-dominated individuals of P in memory M;
7. for G=1 to Gue do
8: for +==1to NP do
9: Implement a ChangeDetectionMechanism() Algorithm 4;
10: if Change is detected then
11: Set t =t+1;
12: ChangeReactionMechanism() Algorithm 5;
13: else
14: Optimize the MOP as a static multi-objective evolutionary algorithm;
15: end if
16: (y):=GenerateOffspring(P);
17: Nig = wy;
18: end for
19: Update memory using N;
20: if PopulationSize > NP then
21: (P):=SurvirvalSelection(P U N, M ); /+ here the IGD indicator is used for en-
vironmental selection/
22: end if
23: end for

24: return P
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after the immune response (output population from the immune response), while
in Immune GDE3 the selection for offspring generation is carried out before the
immune response. The idea of changing the place where the offspring generation
is performed in the original algorithm emerges because several studies suggest that
mating selection from the parent population (P) and memory population (M) im-
proves the offspring generation. Selecting mating parents from P can maintain good
population diversity, selecting parents from M can generate fast converge of the
population which is desirable in fast-changing environments [52],[60], [92], [111]. As
it was aforementioned, DIGDE uses a memory in the change reaction mechanism.
Therefore, the current population after the immune response consists of individuals
from P and M.

Both, Immune GDE3 and DE, share a (141)-selection mechanism, i.e., the best
vector between the target and trial is chosen to remain in the population for the next
generation. However, since Immune GDE3 was proposed to solve multi-objective
problems, it incorporates the dominance relations to select the best vector. On the
other hand, in DIGDE, the (1+1)-selection mechanism is replaced by a (u + A)-
selection mechanism, i.e., all the offspring are generated and they are combined with
the parent population to form a single population (P = PU N, where | P |= 2N P).
After that, the best p individuals from the combined population are selected to
survive for the next generation according to the environmental selection described
in the next section.

Both, offspring generation and selection mechanism described above are presented
in Algorithm 7.

6.2.3 Survival selection

The environmental selection procedure (Algorithm 8), starts with the non-dominated
sorting, where the combined population P is divided into several non-dominated
fronts F, Fs, ..., according to objective values. Then, a truncation technique is
needed to maintain the original population size. To do that, the solutions in the first
k fronts are selected, where k is the maximum value satisfying | F1 U FoU.. .U F}, |[<
NP. Afterwards, the worst solutions (solutions with least contribution to IGD)

are removed one by one from the worst ranked front until the number of solutions
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Algorithm 7 GenerateOffspring(P)

1:

— = = = e

Input: P (current population), G (current generation), n(number of variables of the
problem), CR, F, and initial bounds z(?),  z(h9)
Output: y (offspring solution)
Choose rg # 11 # ro # i from current population P;
Uiq = Zro,q + F - (1,6 — Tr2,¢) Mutation operator;
Generate jrqnqg = radint(1,n);
for j=1to n do
if j= jranq or rand (0,1) < CR then
Us,5,G = Vi,5,G;
else
Ui, 5,G = Ti,5,G5
end if

: end for

: trial = ﬁi,j,GQ
: Yy = trial;

: return y

reaches the predefined population size, where the solution to be eliminated is denoted

as sx € Fj,, which satisfies:

sx = argmin IGD(Fy\ {s}, M) (6.3)

seFy

Algorithm 8 SurvivalSelection(P, M)

Input: P (combined population), M(memory), NP (population size)
Output: P(population for next generation)
F < NondominatedSort(P);
P < F1UF,U. . .UFy, where k is the maximum value such that | FyUFU. . .UF) |[< NP;
while | P |> NP do
Find sx in Fj, by Equation 6.3;
Fi. + I} \ {S*} ;
end while
return P

It is worth remarking that the following modifications were done to Immune

GDE3 to adapt the algorithm for dynamic multi-objective optimization using the

IGD based selection mechanism:

e The IGD contributions must be computed considering the objective function
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values of the current population members and the reference set.

o The offspring generation procedure was incorporated after the change reaction
mechanism, different from Immune GDE3 where the offspring generation is

carried out before the change reaction.

o The (1+1)-selection mechanism was replaced by an (u + A)-selection mecha-

nism.

e The crowding distance truncation mechanism was replaced by a contribution

IGD indicator mechanism.

6.3 Experimental design of DIGDE

The main goal of the DIGDE experimental design consists of an empirical study of
its behavior by considering (a) its performance against other well-known dynamic
MOEAs including its previous version (Immune GDE3), and (b) its ability to track
changes in the environment using different change frequencies. The experimental
design followed in the empirical validation of DIGDE was adopted from [52], because
the experimental design proposed in such work represented the most recent reference
for solving DMOPs.

6.3.1 Test instances

On the experiments carried out, seventeen test problems were selected from the
specialized literature to assess the proposed algorithm against other well-known dy-
namic MOEAs. Different from the selected benchmark functions for the empirical
validation of Immune GDE3, for the empirical validation of DIGDE, two FDA test
problems namely, FDA4 and FDA5, and dMOP test problems were added to the
original set of test instances. Therefore, the new set of test instances include five
FDA test problems [33], three AMOP problems [38], and the nine UDF test prob-
lems [8]. Table 6.1 presents the main features of the new set of test instances. The
definition and details of those problems can be found in [33], [38], [8].
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Table 6.1: Summary of main features for the benchmark set used in DIGDE empirical

validation.
Test Problem Remarks Problem Type No. of Obj. Search Space n
FDAI POS shifts, POF is static Type I 2 [0,1] x [-1,1]" " 11
FDA2 POS shifts, POF shape changes Type 11 2 [0,1] x [-1,1]*" 13
FDA3 POS shifts, POF changes Type II 2 0,1 x [-1,1]"% 10
FDA4 POS shifts, POF is static Type I 3 [0, 1]" 12
FDA5 POS shifts, POF shifts Type 1T 3 [0, 1]" 12
dMOP1 POS is static, POF shape changes Type III 2 [0,1]" 10
dMOP2 POS shifts, POF shape changes Type II 2 [0,1]" 10
dMOP3 POS changes, POF is static Type I 2 [0,1]" 10
UDF1 POF shifts, POF shifts Type 1T 2 [0,1] x [-2,2]"" 10
UDF2 POS changes, POF shifts Type 11 2 [0,1] x [-1,2]"* 10
UDF3 POS is static, POF changes Type III 2 [0,1] x [-1,1]"" 10
UDF4 POS shifts, POF shifts Type II 2 [0,1] x [-1,1]"" 10
UDF5 POS changes, POF changes Type 11 2 [0,1] x [-1,2]"™" 10
UDF6 POS is static, POF changes Type III 2 [0,1] x [-1,1]*" 10
UDF7 POS is static, POF changes Type I11 3 (0,1 x [-2,2]"% 10
UDF8 Several types of dynamic varia- Type 11 2 [0,1] x [-1,1]*" 10
tion of POS and POF
UDF9 Several types of dynamic varia- Type 1T 2 [0,1] x [-2,2]"" 10

tion of POS and POF

6.3.2 Performance metrics

In order to analyze the performance of DIGDE regarding convergence, distribution,

and diversity, additionally to the performance metrics used in the empirical validation
of Immune GDE3 (see Section 5.2.5), the Hypervolume Difference (HVD) and the

Maximum Spread (MS) performance metrics were employed. These two metrics were

adopted as follows:

« Hypervolume Difference (HVD) [52]: This metric measures the gap be-

tween the hypervolume of the Pareto front obtained by an algorithm (POF*)
and that of the true POF. It is calculated as indicated in Equation 6.4

HVD = HV(POF) — HV (POF®)

(6.4)

where HV(S) is the hypervolume of a set S [93]. In this work, the reference

point z,..s for the computation of hypervolume is (2+40.5, 25+0.5, ..., zas +0.5,

where z; is the maximum value of the jth objective of the true POF and M is

the number of objectives. The value of the reference point was adopted from
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the experimental design proposed in [52]. For DMOPs; the average of HVD at

each time step over a run needs to be computed.

o Maximum Spread (MS) [37]: As the same way of HVD, the average of MS
obtained results at each time step is computed to report the final result of the

metric.

6.3.3 Compared algorithms

In order to assess the performance of DIGDE, the results obtained by DIGDE were
compared with respect to those obtained by five different DMOEAs: DNSGA-II-B,
DPSO-4, MOEA /D-CER, SGEA and Immune GDE3. Different from the experi-
mental design proposed to evaluate the performance of Immune GDE3, in the ex-
periments carried out for the empirical validation of DIDGE, only DNSGA-II-B was
adopted as it showed slightly better performance than DNSGA-II-A in the previously
reported experiments (see Section 5.3.1). Furthermore, the MOEA /D-BR algorithm
was replaced by another version of dynamic MOEA /D called MOEA /D-CER. Unlike
MOEA /D-BR, which considers the nearest solution in the past POS as the parent of
the solution concerned. In MOEA /D-CER, the mapping with the past is based on
the nearest distance in the objective function space, i.e., based on the relationships
in the POF [8].

6.3.4 Parameter settings

The problem and parameter settings of those DMOEASs considered in the experiments
designed for the empirical validation of DIGDE were inherited from the referenced

papers and were set as follows:

1. Problem parameters: In order to study the impact of change frequency on
algorithms’ performance, the severity of change n; is fixed to 10, and the fre-
quency of change 7, was set to 5, 10 and 20. These parameters were adopted

from the experimental design proposed in [52].

2. Population size: The population size for all the test problems was set to 100.
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3. Change detection: For all the algorithms, 10% of the population members were

randomly selected for change detection mechanism.

4. Number of runs and stopping criterion: Each algorithm was execute 30 inde-
pendent runs for each test problem. Due to the fact that in DMOPs the term
time is related with the generation counter, each algorithm stops after a spec-
ified number of generations, which should cover all possible changes. In order
to minimize the effect of static optimization, the first change takes place after
the first 50 generations as it was proposed in [52]. Therefore, the total number
of generations was set to 3n;7; +50, which ensures there are 3n; changes during

the evolution process.

5. Algorithm’s parameters: The parameter values of each DMOEA adopted for
the experiments are the same parameters used for the experiments carried out
in the empirical validation of Immune GDE3 (see Table 5.1). The parameters
of DIDGDE are the same of those adopted by Immune GDE3.

6.4 Results and Discussion

In the same way of the empirical validation of Immune GDE3, to study the general
performance of DIGDE, 30 independent runs were carried out by each one of the
compared algorithms. The obtained results in the runs were used to compute the
values of five performance metrics (IGD, HVD, S; MS and C-metric).

Tables 6.2, 6.3, 6.4, 6.5 and 6.6 present the obtained average and standard de-
viation values of IGD, HVD, S, MS and C-metric results for all test problems. For
FDA4, FDA5 and UDF7 test problems, DPSO results are not reported, because
DPSO algorithm only works with bi-objective problems.

The statistical validation of IGD, HVD, S, and MS results was carried out using
the Kruskal-Wallis (KW) test and the Bergmann-Hommels post-hoc test with 95%-
confidence. The Wilcoxon rank-sum test was used to indicate significant differences
between the C-metric results with 95%-confidence. Figs. 6.1, 6.3, 6.4, 6.5 and 6.6

present a summary of the statistical tests of each metric.



Table 6.2: IGD mean and standard deviation values for all test problems on the empirical validation of DIGDE
and summary of Kruskal-Wallis test and the Bergmann-Hommels post-hoc test. “+” means that DIGDE outper-
formed the algorithm in the corresponding column. “—” means that the algorithm in the corresponding column
outperformed DIGDE. No significant differences between DIGDE and the algorithm in the corresponding column

are indicated with “=". The best results are marked in boldface

Prob. (7¢smn:) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10) 0.62299 +(8.6991E-2) +  0.40824 +(1.8676E-2) +  0.07645 £ (4.1179E-3) +  0.03234 4 (1.4610E-3) + 0.04886 +(5.4716E-4) + 0.01604 +(5.1278E-4)
FDA1 (10,10)  0.05765 +£(6.6603E-3) +  0.12486 =+ (1.3793E-2) +  0.05934 £(1.0640E-3) +  0.01320 +(2.6544E-3) =  0.02978 +(1.6619E-4) + 0.01309 +(2.1780E-3)
(20,10)  0.04062 £(4.6663E-3) +  0.02304 £(3.0631E-3) +  0.01163 £(6.4228E-4) 4+  0.00764 4 (1.8690E-3) + 0.01008 +(1.6202E-4) + 0.00375 +(1.1274E-3)
(5,10) 0.02557 +£(1.6028E-3) +  0.01934 +(1.0898E-3) +  0.01647 +(2.9283E-3) +  0.01453 +(1.3881E-3) + 0.01153 +(8.5212E-4) + 0.00785 +(2.3451E-4)
FDA2 (10,10)  0.01040 +(2.8388E-4) +  0.01067 £(3.9143E-4) +  0.01054 £(3.2397E-4) 4+  0.00856 +(2.8976E-4) + 0.00753 +(7.6300E-4) = 0.00591 +(5.8512E-4)
(20,10)  0.00608 £(2.5876E-4) +  0.00899 £(1.0552E-3) +  0.00829 £(1.0200E-3) 4+  0.00612 4 (1.1523E-4) + 0.00483 +(7.3294E-4) + 0.00281 +(2.7758E-3
(5,10) 0.24766 +(9.6644E-3) +  0.18963 £ (1.0883E-2) +  0.15040 +(6.2962E-3) +  0.06115 +(3.8965E-2) = 0.11206 +(8.4817E-3) + 0.05856 +(1.7228E-3)
FDA3 (10,10)  0.10375 £(2.5686E-3) +  0.10625 £(4.1923E-3) +  0.12275 £(2.5433E-3) 4+  0.03952 4(3.2663E-2) + 0.08293 +(4.4161E-3) + 0.01197 +(3.2057E-3)
(20,10)  0.08720 £(6.8513E-3) +  0.05366 £ (8.5496E-3) +  0.05127 £(8.1250E-3) 4+  0.03420 £(2.6656E-2) + 0.01390 +(2.4701E-3) + 0.00984 +(2.3210E-3)
(5,10) 1.48976 +(1.0483E-2) +  n/a 0.28703 +(1.0496E-2) +  0.90946 +(7.1165E-3) + 0.15779 +(7.5694E-3) = 0.14851 +(5.0570E-3)
FDA4 (10,10)  0.75427 £(6.6113E-3) +  n/a 0.20601 +(5.5054E-3) +  0.28161 +(6.8366E-3) + 0.13322 +(3.8142E-3) =  0.13588 +(1.8520E-3)
(20,10)  0.26119 £(6.5582E-3) +  n/a 0.16867 +(5.0890E-3) +  0.12335 +(1.6531E-3) + 0.11829 +(3.7750E-3) + 0.08050 +(2.1205E-3)
(5,10) 1.74441 +(8.4398E-3) +  n/a 0.58579 +(1.4686E-2) +  0.52055 4 (1.3708E-3) + 0.41388 +(1.1710E-2) = 0.40211 +(3.9802E-3)
FDA5 (10,10)  1.00648 £(8.1048E-3) +  n/a 0.38978 +(1.8828E-2) +  0.36127 +(1.8125E-3) = 0.28940 +(5.9896E-3) = 0.27002 +(4.5182E-4)
(20,10)  0.48839 +(4.4864E-3) + n/a 0.29505 +(1.1296E-2) +  0.30490 +(2.5630E-3) + 0.29068 +(8.3887E-4) + 0.15092 +(3.0982E-3)
(5,10) 0.13595 +£(4.7950E-3) +  0.11402 £(1.1749E-2) +  0.01199 £(1.2659E-3) 4+  0.01109 4(8.3652E-3) + 0.01255 +(3.5428E-4) + 0.00918 +(1.6203E-5)
dMOP1 (10,10)  0.00885 +(2.8045E-4) +  0.00917 £(5.6396E-4) +  0.00878 £(5.9896E-4) +  0.00770 4(2.7687E-3) + 0.00745 +(2.5972E-4) + 0.00420 +(2.0275E-4)
(20,10)  0.00747 +(2.6866E-4) +  0.00792 +(4.1984E-4) +  0.00698 +(9.5141E-5) +  0.00630 £(1.2165E-3) + 0.00608 +(1.8168E-4) + 0.00230 +(1.6582E-4)
(5,10) 0.65051 £(2.3397E-2) +  0.52055 £(1.0845BE-2) +  0.19393 £(1.3095E-2) +  0.03003 #(1.1135E-4) =  0.03624 +(1.5298E-3) = 0.03208 +(2.0302E-4)
dMOP2  (10,10)  0.11449 +(2.6286E-3) +  0.16905 £(6.6161E-3) +  0.15374 £(1.4819E-2) +  0.01212 4(1.8319E-5) = 0.01252 +(3.2109E-4) = 0.01209 +(3.2051E-5)
(20,10)  0.14885 +(6.0729E-3) +  0.10841 £(6.9869E-3) +  0.10092 +(2.3381E-3) +  0.00621 +(5.4693E-5) = 0.00801 +(5.0057E-4) + 0.00596 +(2.8512E-6)
(5,10) 0.56467 £(9.0425E-3) +  0.51113 £(1.9323E-2) +  0.14657 £(7.7593E-3) 4+  0.17585 4(3.1699E-2) + 0.10938 +(6.3584E-3) + 0.08032 +(1.3150E-3)
dMOP3  (10,10)  0.19230 £(4.7921E-3) +  0.18841 £(1.4559E-2) +  0.10385 4(6.2212E-3) 4+  0.12691 4(3.8237E-3) + 0.09749 +(7.1065E-3) + 0.06021 +(1.0518E-3)
(20,10)  0.10010 +(5.1016E-3) +  0.15874 £(1.0211E-2) 4+  0.07666 +(4.7863E-3) 4+  0.08043 +(5.9849E-3) + 0.06198 +(2.9097E-3) + 0.03152 +(1.2018E-3)

Continued on next page
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Table 6.2 Continued from previous page

Prob. (t¢sn:) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10) 0.15460 +(4.3575E-2) +  0.21334 £(1.4350BE-2) +  0.13314 +(8.4602E-3) +  0.18100 +(5.3190E-2) + 0.16138 +(5.8614E-3) + 0.11094 +(2.5120E-3)
UDF1 (10,10)  0.08368 +(1.9410E-2) =  0.14577 £(1.1246E-2) +  0.13085 +(4.9004E-3) 4+  0.11617 4 (4.4549E-2) + 0.09670 +(3.3274E-3) + 0.05031 +(1.8451E-3)
(20,10)  0.07440 £(6.9930E-3) +  0.11351 £(9.1603E-3) +  0.09561 £(5.5863E-3) 4+  0.08413 £(7.2941E-2) + 0.07360 +(2.0273E-3) + 0.03844 +(3.4501E-3)
(5,10) 0.15000 +(5.4306E-3) +  0.13814 +(5.6220E-2) +  0.08889 +(4.4838E-3) +  0.11856 +(6.1656E-2) + 0.03484 +(5.4327E-3) = 0.02842 +(2.8410E-3)
UDF2 (10,10)  0.10655 +(3.6593E-3) +  0.08759 +(3.2898E-2) +  0.03269 +(2.8550E-3) +  0.08580 =+(2.8780E-2) + 0.01128 +(3.8278E-3) + 0.00655 +(1.8025E-3)
(20,10)  0.08345 £(4.6526E-3) +  0.06632 £(3.0116E-2) +  0.00899 £(4.1663E-4) +  0.02116 £ (1.5646E-3) + 0.00738 +(2.3986E-4) + 0.00408 +(1.6152E-3)
(5,10) 0.68876 +(5.8259E-3) +  0.66295 +(8.8046E-3) +  0.45383 +(7.5594E-3) +  0.68531 +(4.0420E-3) + 0.39703 +(1.9040E-2) + 0.25105 +(2.0275E-4)
UDF3 (10,10)  0.59227 £(9.2397E-3) +  0.59477 £(7.3205E-3) +  0.40498 £(1.1930E-2) 4+  0.60199 4(2.5568E-3) + 0.31235 +(2.9010E-2) + 0.17205 +(3.7114E-3)
(20,10)  0.49255 £(5.8185E-3) +  0.51317 £(1.0874E-2) +  0.35424 £(3.4430E-3) 4+  0.40909 4(9.3294E-3) + 0.20125 +(6.1389E-3) + 0.10240 +(4.9520E-3)
(5,10) 0.37554 +(8.8753E-3) +  0.39641 £(8.2271E-3) 4+  0.33847 +(9.4256E-3) +  0.18623 +(4.0053E-1) =  0.20735 +(5.8972E-3) + 0.19021 +(2.0813E-3)
UDF4 (10,10)  0.17321 £(2.2895E-2) +  0.24426 £(1.2164E-2) +  0.31726 £(1.7003E-2) +  0.16318 +(2.6759E-1) =  0.17857 +(5.2238E-3) = 0.18102 +(2.2351E-3)
(20,10)  0.13845 £(1.3822E-2) +  0.18547 £(8.6882E-3) +  0.15967 £(1.8004E-2) 4+  0.11166 4 (4.3169E-2) + 0.11871 +(5.1822E-3) + 0.09021 +(1.0852E-3)
(5,10) 0.20810 +(1.4654E-2) +  0.16703 +(1.2308E-2) +  0.02938 +(1.6744E-4) =  0.16328 +(3.3695E-2) + 0.02067 +(8.8276E-4) = 0.01810 +(5.5102E-3)
UDF5 (10,10)  0.11303 £(3.0661E-2) +  0.11281 £(8.1360E-3) +  0.03028 £(3.4347E-3) =  0.09873 £ (1.0825E-2) + 0.01007 +(4.7987E-3) = 0.00971 +(2.2141E-4)
(20,10)  0.08073 £(2.6852E-2) +  0.05793 £ (1.4880E-2) +  0.00820 =+(3.8439E-4) 4+  0.02406 4(2.9366E-3) + 0.00888 +(5.3006E-4) + 0.00598 +(3.9421E-4)
(5,10) 0.60166 +(1.6185E-1) + 1.36285 +(8.7259E-3) + 1.22323 £ (1.7900E-2) 4+  0.74116 4(2.8448E-1) + 0.40838 +(1.2777E-2) = 0.38526 +(5.0215E-3)
UDF6 (10,10)  0.45209 +(3.0209E-2) + 1.25042 =+(1.8869E-2) + 1.18341 £(8.6106E-3) +  0.68014 4(3.3005E-1) + 0.29770 +(4.6476E-2) + 0.13102 +(3.2102E-4)
(20,10)  0.41426 +(2.9141E-2) +  1.04189 +(4.6806E-2) + 1.05263 +(3.5941B-2) +  0.56374 +(1.9105E-2) + 0.12874 +(3.2273E-3) + 0.08210 +(5.1017E-4)
(5,10) 0.68339 +(4.4837E-3) + n/a 0.23849 +(4.2897E-3) +  0.55324 +(2.6480E-3) + 0.20193 +(2.6969E-3) = 0.18651 +(1.1402E-3)
UDF7 (10,10)  0.52067 £(2.0654E-2) +  n/a 0.21556 +(7.4823E-3) +  0.50227 +(2.4764E-2) + 0.17483 +£(9.1391E-3) + 0.12014 +(5.0571E-4)
(20,10)  0.47155 +(4.4886E-3) + n/a 0.12052 +(4.6331E-3) +  0.41117 +(1.8852E-2) + 0.11321 +(2.3259E-3) + 0.05997 +(3.8402E-4)
(5,10) 0.52833 £(4.0274E-3) +  0.50751 £(1.7687E-2) +  0.42104 £(5.5450E-2) 4+  0.40346 £ (3.1179E-3) + 0.28754 +(1.8807E-2) + 0.15971 +(3.2485E-3)
UDF8 (10,10)  0.37625 +(1.2407E-2) +  0.32423 £(7.3664E-3) +  0.33553 £(2.1371E-2) 4+  0.29624 4(4.0600E-3) + 0.19793 +(1.4719E-2) + 0.09812 +(5.9120E-3)
(20,10)  0.22232 +(8.3150E-3) +  0.27848 +(6.4089E-3) +  0.20442 +(9.3678E-3) +  0.18898 +(5.7045E-3) + 0.10231 +(5.0851E-3) + 0.05989 +(3.3289E-3)
(5,10) 0.47824 £(6.1106E-3) +  0.41907 £(1.0846E-2) +  0.16242 4(4.8309E-3) +  0.41466 4(3.9856E-3) + 0.11827 +(4.3334E-3) + 0.08113 +(1.0454E-3)
UDF9 (10,10)  0.38029 +(1.0272E-2) +  0.29128 +(7.1188E-3) +  0.14618 +(5.5383E-3) +  0.24147 £(2.3278E-3) + 0.09742 +(5.7192E-3) + 0.05941 +(2.0844E-4)
(20,10)  0.21582 +(5.9646E-3) +  0.18407 +(9.7614E-3) +  0.08398 +(6.0741E-3) +  0.11090 =+(5.2469E-3) + 0.01240 +(1.3085E-3) + 0.00705 +(2.0748E-4)
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6.4.1 Proximity metrics discussion

Regarding the IGD metric, it can be observed from Table 6.2 that DIGDE obtains
the best results in most test problems (thirteen of seventeen test instances) over the
three configurations of problem parameters. Furthermore, both SGEA and Immune
GDES3 also obtains competitive results. However, the statistical test shows that they
do not outperform DIGDE in any test problem. For example, the results showed
in Table 6.2 also suggest that SGEA obtains slightly better results than DIGDE on
FDA1 and UDF4 test problems in the parameter configuration (10,10). However,
the statistical test shows no significant differences between both algorithms.

On the other hand, for all tested instances, DNSGA-II-B, DPSO and MOEA /D-
CER fail to show a good performance according to the IGD metric, as indicated
by the large IGD values in Table 6.2. From Table 6.2, it can also be observed that
all the algorithms improve its performance when increasing the frequency of change
parameter value (7;). Such behavior could be attributed to the fact that a higher
value of the 7, parameter decreases the difficulty of the problem. Therefore, the
algorithms obtain better results when the changes are less frequent, i.e., they have
more time to converge to the new POF.

Figure 6.1 shows a summary of the number of test problems where DIGDE out-
performed, was similar, or worst than the remaining algorithms according to the
significance test applied.

From Fig. 6.1 it can be observed that for the parameter configurations (5,10),
DIGDE has a similar behavior than Immune GDE3 in seven of seventeen test
problems. On the other hand, by comparing DIGDE performance against SGEA,
MOEA /D-CER, DPSO and DNSGA-II, Fig. 6.1 also shows that DIGDE obtains
results with significant differences in most test problems when increasing the fre-
quency of change parameter value. According to the results previously discussed,
DIGDE, Immune GDE3 and SGEA are the three most competitive algorithms re-
garding IGD metric. However, DIGDE has a better performance in most test prob-
lems and parameter configurations. To analyze another kind of behavior of the three
most competitive algorithms, the evolution curves plots of the average IGD values
over 30 independent runs for some representative test problems are presented in Fig.

6.2. From such figure, it can be clearly observed that, compared with the other
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Figure 6.1: IGD metric resume of Kruskal-Wallis test and the Bergmann-Hommels
post-hoc test which indicates the number of functions in which DIGDE outperformed,
was similar or worst than the remaining algorithms over different configurations of
problem parameters

algorithms, DIGDE recovers faster to environmental changes for most of the test
problems, thereby obtaining higher convergence performance. On the other hand,
DIGDE and Immune GDE3 generate a good population diversity when a change oc-
curs. Therefore, the IGD values obtained by both algorithms fluctuate widely on all
test problems and have similar evolution curves on the majority of cases. In contrast,
evolution curves of SGEA are more stable than Immune GDE3 and DIGDE evolu-
tion curves. However, such behavior is attributed to its poor population diversity,

i.e., SGEA presents problems to increase diversity when changes occur.

Finally, based on the IGD metric, the good performance of DIGDE against the
rest of the algorithms, can be attributed to the use of IGD metric to guide the search
process. Therefore, the IGD indicator helps the algorithm to track the changes as
quickly as possible and to obtain good approximations to the POF.

For the Hypervolume results, the behavior of all algorithms was very similar to
that observed for the IGD results. From Table 6.3 it was observed that DIGDE is
clearly more promising than the other algorithms to solve most of the test problems,
but it is outperformed by SGEA and Immune GDE3 on FDA1 for the first two
configurations of problem parameters where the changes are more frequent. However,

the statistical test shows that it does not exist significant difference between DIGDE
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Figure 6.2: Evolution curves of IGD values obtained by the three most competitive
algorithms for 7, = 10 and n; = 10.

and those algorithms. Compared with DNSGA-II, DPSO-4 and MOEA/D-CER
algorithms, it was observed that these algorithms have a worse performance than
SGEA, Immune GDE3 and DIGDE. The results of the statistical test confirm such
finding. On the other hand, from Table 6.3 and the summary of the statistical test
presented in Fig. 6.3, it can also be observed that for the three three-objective
problems, i.e., FDA4, FDA5, and UDF7, DNSGA-II, MOEA/D-CER and SGEA are
most influenced by frequent changes and struggle to push their populations toward
the POF, as indicated by their large HVD values. In contrast, Immune GDE3 and
DIGDE seem less sensitive to the frequency of change, as it can be seen from their
gradual improvement on HVD values. Besides, the HVD values obtained on UDF
test problems are significantly higher to those obtained on FDA and dMOP problems,
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which imply that the optimization difficulties are increased in UDF problems. Such
behavior could be attributed to the fact that UDF problems have nonlinear linkages

among decision variables.



Table 6.3: HV D mean and standard deviation values for all test problems on the empirical validation of DIGDE
and summary of Kruskal-Wallis test and the Bergmann-Hommels post-hoc test. “+” means that DIGDE outper-
formed the algorithm in the corresponding column. “—” means that the algorithm in the corresponding column
outperformed DIGDE. No significant differences between DIGDE and the algorithm in the corresponding column

are indicated with “=". The best results are marked in boldface

Prob. (74, ny) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10)  0.84501 +(1.3491E-2) +  0.68167 +(6.3444E-2) +  0.12850 +(1.6339E-2) +  0.08166 +(3.9833E-2) = 0.08023 +(1.1777E-3) =  0.09542 +(1.0545E-3)
FDA1 (10,10) 0.13519 +(6.4432E-3) +  0.45499 +(4.3669E-2) +  0.08107 £(3.0662E-3) +  0.08563 £(2.0277E-2) =  0.05471 +(5.4097E-3) = 0.04874 +(3.4105E-3)
(20,10) 0.03655 +(1.4629E-3) +  0.25473 £(5.7566E-2) +  0.05716 £(3.1004E-3) +  0.01970 £(5.5412E-3) + 0.02623 +(4.2305E-3) + 0.01307 +(1.7749E-4)

(5,10)  0.03985 +(5.5513E-3) +  0.04430 +(5.3404E-3) +  0.04026 +(1.6480E-3) +  0.02283 - (1.4483E-2) + 0.02140 +(1.6725E-3) + 0.01801 +(1.0545E-3)
FDA2 (10,10) 0.02414 +(2.5881E-2) +  0.02297 +(5.6239E-3) +  0.02817 £(7.8075E-2) +  0.01957 £(1.3017E-2) + 0.01770 +(8.7710E-4) + 0.01395 +(3.0145E-4)
(20,10) 0.01425 +(1.8521E-2) +  0.01931 £(2.9070E-3) +  0.01358 £(1.6095E-3) +  0.01268 £(9.7391E-3) + 0.01563 +(9.8963E-4) + 0.01003 +(3.5484E-4)
(5,10)  1.36097 £(1.1758E-1) + 1.69140 +(7.7064E-2) + 1.39939 £(1.0070E-1) + 0.98681 =+ (7.0134E-2) + 1.12962 +(1.5212E-2) + 0.93024 3 (1.0544E-3)
FDA3 (10,10) 1.11535 +(1.4867E-2) + 1.52929 +(1.3689E-1) + 1.22007 4(5.7267E-2) +  0.92823 4 (4.6482E-3) + 0.97615 +(1.9430E-2) + 0.86540 +(2.0842E-2)
(20,10) 1.03329 +(2.8567E-2) + 1.35199 £(1.1217E-1) + 1.02693 £(2.4223E-2) +  0.90996 +(2.5413E-3) + 0.74957 +(3.0478E-2) + 0.65041 +(4.5871E-3)
(5,10)  2.07003 +(3.9712E-2) +  n/a 0.56069 +(5.2668E-2) + 1.06390 =+(3.4992E-2) + 1.17116 +(1.0470E-1) + 0.98141 +(2.4395E-3)
FDA4 (10,10) 1.62427 +(9.4611E-2) + n/a 0.46432 +(5.7790E-2) +  0.25303 +(1.9474E-2) + 0.31336 +(4.4003E-2) + 0.21054 +(2.8741E-3)
(20,10) 0.56792 +(1.5667E-2) +  n/a 0.23121 +(5.3474E-2) +  0.13812 +(9.0830E-2) + 0.22190 +(1.6849E-2) + 0.10985 +(3.9852E-3)
(5,10)  6.28445 +(4.2495E-1) +  n/a 3.68672 +(3.2655E-1) +  2.37557 +(3.2905E-1) + 1.80394 +(3.5505E-1) + 1.08411 4(2.7484E-3)
FDA5 (10,10) 5.54654 +(2.7897E-1) +  n/a 2.68656 +(3.9240E-1) + 1.85607 +(6.3785E-2) + 1.29750 +(3.8586E-1) + 0.99742 +(4.8744E-3)
(20,10) 2.82941 +(2.9092E-1) + n/a 2.11155 +(3.5352E-1) + 1.77163 =+(4.0812E-2) + 0.96029 +(9.6431E-2) = 0.96008 +(3.9840E-2)
(5,10)  0.03883 +(6.1054E-3) +  0.08635 £(6.2623E-3) +  0.03955 £(3.6679E-3) +  0.03787 +(5.1738E-2) + 0.01044 +(3.5417E-4) + 0.00958 +(3.4584E-4)
dMOP1 (10,10) 0.02034 +(1.7943E-2) +  0.07287 £(7.3035E-3) +  0.02746 £(6.2344E-3) +  0.01921 £(1.0101E-2) + 0.00877 +(3.2144E-4) + 0.00565 +(5.5498E-4)
(20,10) 0.01544 +(1.8027E-3) +  0.05847 +(5.8606E-3) +  0.02001 +(2.2189E-3) +  0.01714 £(1.0522E-2) + 0.00773 +(3.8780E-4) + 0.00499 +(3.5899E-4)
(5,10)  0.78959 +(3.2258E-2) +  0.66115 £(3.8445E-2) +  0.35203 £(3.0077E-2) +  0.07990 =+(5.6383E-3) + 0.06150 +(4.3416E-3) = 0.05678 +(4.5452E-3)
dMOP2  (10,10) 0.23510 £(2.5342E-2) +  0.48250 £(5.6692E-2) +  0.15120 £(3.1997E-2) +  0.03576 +(2.6861E-3) + 0.04781 +(3.9442E-3) + 0.02548 +(2.4741E-4)
(20,10) 0.04317 +(1.4165E-3) +  0.22509 +(5.7399E-2) +  0.07354 +£(6.5957E-3) +  0.01619 +(2.3079E-3) + 0.02346 +(4.3497E-3) + 0.00988 +(2.0201E-4)
(5,10)  0.91019 +(6.4601E-2) +  0.56147 £(5.3004E-2) +  0.40887 £(1.0830E-2) +  0.40250 £(6.9192E-3) + 0.19288 +(2.0406E-2) + 0.11545 +(1.0548E-3)
dMOP3  (10,10) 0.59637 +(5.6292E-2) 4+  0.11551 £(1.3564E-2) +  0.26635 4(2.1425E-2) +  0.31761 4 (1.1140E-2) + 0.05881 +(4.5912E-3) + 0.03878 +(2.0158E-3)
(20,10) 0.24332 +(3.6738E-2) + 0.08209 +(2.8641E-3) + 0.22445 +(2.2699E-2) + 0.23308 +(1.4247E-2) + 0.02352 +(6.4592E-3) + 0.01904 £ (1.7874E-4)
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Table 6.3 Continued from previous page

Prob. (74, ny) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10)  0.84385 +(5.2276E-2) +  0.92483 +(4.0769E-2) +  0.77735 +£(3.7392E-2) +  0.74363 +(6.3295E-2) + 0.55397 +£(5.1616E-2) + 0.33054 +(4.8478E-2)
UDF1 (10,10) 0.45841 +(5.6742E-2) +  0.66365 +(4.2682E-2) +  0.54062 +(4.0948E-2) +  0.51585 +(1.2601E-2) + 0.26695 +(5.5903E-2) + 0.14254 +(1.7476E-2)
(20,10) 0.09798 +(7.8166E-3) +  0.40025 £(5.3530E-2) +  0.29409 £(4.5910E-2) +  0.22301 £(2.3275E-2) + 0.21074 +(3.6905E-3) + 0.09861 +(3.4844E-3)
(5,10)  0.71502 +(3.9678E-2) +  0.91918 +(2.9953E-2) +  0.78333 +(3.2724E-2) +  0.75987 +(4.3106E-2) + 0.62851 +(6.5622E-2) + 0.41005 +(1.8711E-2)
UDF2 (10,10) 0.53789 +(2.8519E-2) +  0.68361 +(4.4517E-2) +  0.49757 £(1.7528E-2) +  0.51116 +(1.5547E-2) + 0.21661 +(2.9386E-2) + 0.13074 +(2.0875E-2)
(20,10) 0.13166 +(2.0487E-2) +  0.40395 £(6.1873E-2) +  0.21195 £(2.7835E-2) +  0.50365 =+ (1.8824E-3) + 0.11075 £(1.4361E-3) + 0.08118 +(4.4847E-3)
(5,10)  2.16759 +(2.6143E-1) +  3.24777 +(2.2964E-1) +  2.21604 +(3.0451E-1) + 1.32118 +(1.8744E-2) + 1.01789 +(6.7713E-2) + 0.88941 +(3.5405E-3)
UDF3 (10,10) 1.16849 +(9.4736E-2) + 1.50616 =+ (2.0688E-1) + 1.60039 4 (1.1286E-1) + 1.22060 =+(4.4827E-3) + 0.86807 +(7.2021E-3) + 0.66044 +(2.0022E-4)
(20,10) 0.91810 +(3.5883E-2) + 1.00623 =+(8.2303E-2) + 1.17634 £(9.9569E-2) +  0.97296 +(5.5403E-3) + 0.58988 +(5.4192E-3) + 0.51076 +(3.0108E-4)
(5,10)  0.56965 +(4.5447E-2) +  0.79491 +(4.7036E-2) +  0.57426 +(6.4901E-2) +  0.48348 +(4.4233E-2) + 0.39806 +(9.7270E-3) = 0.35251 +(1.0577E-2)
UDF4 (10,10) 0.26858 +(4.3698E-2) +  0.57115 £(4.9897E-2) +  0.36337 £(5.4503E-2) +  0.33409 =+(4.8787E-3) + 0.20963 £(3.1914E-2) = 0.17820 +(2.4486E-2)
(20,10) 0.12085 +(1.9966E-2) +  0.28185 £(5.6443E-2) +  0.19249 £(4.7808E-2) +  0.10272 £(7.7944E-3) + 0.12602 +(1.6371E-3) + 0.00981 +(3.0574E-4)
(5,10)  0.46902 +(3.6836E-2) +  0.87303 +(3.1614E-2) +  0.40309 4(1.0963E-2) =  0.38902 =+(5.8324E-2) = 0.34622 +(3.7569E-2) = 0.33587 +(2.0587E-2)
UDF5 (10,10) 0.27641 +(5.7508E-3) +  0.57507 £(4.3890E-2) +  0.10633 £(9.3505E-2) =  0.27213 £(5.5365E-3) + 0.22833 +(1.8186E-2) + 0.12058 +(1.8548E-4)
(20,10) 0.13353 +(2.0970E-2) +  0.10763 £(4.6231E-1) +  0.12277 £(8.5913E-3) +  0.10315 =+(7.2295E-3) + 0.11012 +(1.3802E-2) + 0.06764 +(2.7740E-4)
(5,10)  0.89499 +(4.6813E-2) + 1.35359 £ (1.7317E-1) + 1.25613 4 (1.3474E-1) + 1.11858 +(5.5303E-1) + 0.73104 +(1.8902E-2) = 0.69871 +(1.5188E-2)
UDF6 (10,10) 0.83442 +(6.6427E-2) + 1.02669 £(5.2800E-2) 4+  0.94410 £(3.1888E-2) +  0.97268 £ (4.6700E-2) + 0.56405 +(5.8290E-2) + 0.30546 +(4.0548E-3)
(20,10) 0.58433 +(5.3780E-2) +  0.84811 +(4.6972E-2) +  0.79957 £(5.1951E-2) +  0.61478 +(8.5143E-2) + 0.31093 +(5.2131E-2) + 0.19784 +(2.1849E-3)
(5,10)  4.81537 +(2.5649E-1) +  n/a 3.00628 +(8.8815E-2) +  3.14319 +(8.5994E-2) + 2.07210 +(2.8151E-1) + 1.25484 4(2.4841E-2)
UDF7 (10,10) 2.12170 +(2.8582E-1) + n/a 1.59798 +(2.4480E-1) + 1.97099 +(1.6973E-1) + 1.04313 +(6.6382E-2) + 0.91058 +(4.3087E-2)
(20,10) 1.00742 +(6.5338E-2) +  n/a 1.19174 +(9.7018E-2) + 1.35137 £(2.0331E-1) + 0.78029 +(2.9494E-2) + 0.66877 +(2.0178E-4)
(5,10)  2.36301 +(6.8705E-1) +  4.15852 +(5.7610E-1) + 1.90123 £(7.2767E-2) +  2.48997 +(2.4274E-1) + 1.19731 +(7.3443E-2) = 1.18411 4(1.6595E-2)
UDF8 (10,10) 1.47363 +(2.3769E-1) +  3.55950 +(4.5280E-1) + 1.17061 #(1.1351E-1) + 1.12205 +(7.5123E-2) + 0.91702 +(4.3299E-2) = 0.90788 +(2.847T4E-2)
(20,10) 0.91579 +(4.0783E-2) +  2.41688 +(2.7389E-1) +  0.90784 +(3.9926E-2) +  0.96016 =+ (3.1784E-2) + 0.59843 +(5.4509E-2) + 0.35078 +(1.6068E-3)
(5,10)  2.17893 +(3.2908E-1) +  5.46919 +(3.6295E-1) +  4.13271 +(8.7226E-2) + 1.95570 +(6.6399E-2) + 1.21315 £ (1.4875E-1) + 0.78311 +(2.0087E-3)
UDF9 (10,10) 1.74052 +(1.4769E-1) +  4.67323 £(7.1881E-1) +  2.82470 +(4.4732E-1) + 1.41249 £(1.9753E-1) + 0.93646 +(3.3535E-2) + 0.58054 +(1.0584E-3)
(20,10) 1.25540 +(1.6195E-1) +  2.46699 +(3.8888E-1) + 1.96801 4(2.3342E-1) + 1.00533 £(6.6751E-3) + 0.63905 +(5.9642E-2) + 0.35891 +(2.8978E-4)
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Figure 6.3: HVD metric resume of Kruskal-Wallis test and the Bergmann-Hommels
post-hoc test which indicates the number of functions in which DIGDE outperformed,
was similar or worst than the remaining algorithms over different configurations of
problem parameters

6.4.2 Distribution metrics discussion

To analyze how good the distribution of solutions is over the Pareto Front and to
complement the results obtained by the proximity metrics, the results obtained by
Spacing (S), Maximum Spread (MS) and Two-Set Coverage (C-metric) metrics are

presented in this section.

As regards Spacing metric, it can be seen from Table 6.4 that DIGDE obtains
the best results on most of the tested problems. Therefore, it maintains a better dis-
tribution of its approximations over environmental changes than the other compared
algorithms. In addition, its performance slightly decreases in fast changes (7,.= 5 and
10) when it is compared with Immune GDE3 for UDF1, UDF4, UDF7 and UDF8
test problems (Type III and Type II problems), and with SGEA for FDA1, FDA5
and UDF9 (Type I and Type II test problems). Compared against SGEA, the sta-
tistical test shows that there are not significant differences on such cases. Moreover,
the statistical test also confirms that Immune GDE3 outperforms DIGDE on UDF4
and UDFS8 test problems for 7,= 5 (faster changes). Such behavior changes when

increasing the value of 7; parameter favoring the performance of DIGDE.

On the other hand, as regards to DPSO, DIGDE and Immune GDE3 always
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obtain better results for all parameter configurations (see Table 6.4 and Fig. 6.4).
One possible explanation to the poor performance of DPSO is that DPSO uses a
diversity maintenance technique which consists in updating of the memory particles,
but if there are a few solutions in the memory, this technique may not be effective to
keep a set uniformly distributed solutions. From Table 6.4 it was also observed that
the DNSGA-IT algorithm presents similar behavior than DIGDE on FDA1 and FDA2
test problems for the first parameter configuration. Furthermore, MOEA /D-CER
attempts to maintain competitive Spacing results. As the same way of proximity
metrics, from Fig. 6.4 and Table 6.4, it is clearly observed that as the frequency of

changes increases, DIGDE improves its performance.



Table 6.4: S mean and standard deviation values for all test problems on the empirical validation of DIGDE and
summary of Kruskal-Wallis test and the Bergmann-Hommels post-hoc test. “+” means that DIGDE outperformed
the algorithm in the corresponding column. “—” means that the algorithm in the corresponding column outper-
formed DIGDE. No significant differences between DIGDE and the algorithm in the corresponding column are

indicated with “=". The best results are marked in boldface

Prob. (74, n) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10)  0.02755 +(1.8963E-3) = 0.06739 +(2.3935E-2) +  0.05739 £(4.1316E-3) +  0.01379 +(3.1736E-3) =  0.04883 +(5.9498E-3) = 0.03650 +(2.2485E-2)
FDA1 (10,10) 0.01247 +(4.5614E-3) + 0.01970 +(3.4256E-3) +  0.05712 +(1.2079E-3) +  0.00698 4 (4.6456E-4) = 0.02979 +(2.3621E-4) + 0.00618 +(3.5415E-3)
(20,10) 0.00597 +(7.6355E-4) + 0.01062 +(2.0743E-3) +  0.01219 £(7.5346E-4) +  0.00345 +(2.5352E-4) = 0.00576 +(1.6356E-4) + 0.00312 +(1.1878E-4)
(5,10) 0.00731 +(3.8768E-4) =  0.01716 +£(3.0737E-2) +  0.01615 +(2.7805E-3) +  0.00989 +(1.5454E-3) = 0.01247 +(8.0401E-4) + 0.00999 +(2.5441E-4)
FDA2 (10,10) 0.00567 +(4.9892E-4) = 0.01107 +(1.5072E-2) +  0.01014 £(3.2100E-3) +  0.00620 +(6.6254E-4) = 0.00868 +(4.1849E-4) + 0.00521 +(1.3205E-4)
(20,10) 0.00477 +(1.7634E-4) + 0.00998 +(2.0743E-3) +  0.00967 £(3.1540E-3) +  0.00417 £(5.1767E-4) + 0.00601 +(1.0782E-4) + 0.00264 +(1.2309E-4)
(5,10)  0.01670 +(1.5368E-3) + 0.02835 +(4.2981E-3) +  0.01901 +(1.8785E-4) +  0.03416 +(2.3310E-3) + 0.01842 +(9.3056E-4) =  0.01369 +(2.1810E-3)
FDA3 (10,10) 0.01140 +(6.1381E-4) + 0.02602 +(1.8735E-3) +  0.01451 +(8.6254E-4) +  0.02309 +(1.7408E-3) + 0.06998 +(4.5364E-4) + 0.00859 +(2.5110E-4)
(20,10) 0.00857 +(3.0101E-4) + 0.01363 +(1.5336E-3) +  0.01163 £(6.8985E-4) +  0.01828 £(3.3515E-3) + 0.00819 +(1.0016E-3) + 0.00688 +(1.1057E-4)
(5,10)  0.12213 +(9.4296E-3) + n/a 0.09354 +(3.8416E-3) =  0.08558 +(2.5098E-3) = 0.09062 +(5.3846E-4) = 0.07857 +(1.0657E-3)
FDA4 (10,10) 0.08767 +(4.6642E-3) + n/a 0.06702 £(6.6295E-3) +  0.04265 +(1.5280E-3) + 0.05317 +£(2.3723E-3) + 0.07857 +(1.0657E-3)
(20,10) 0.04952 +(4.2408E-3) + n/a 0.04340 £(2.1806E-3) +  0.02510 +(2.9285E-3) + 0.03390 +(2.2090E-3) + 0.07857 +(1.0657E-3)
(5,10)  0.15706 +(1.4403E-2) + n/a 0.09333 +£(3.1799E-3) =  0.08225 +(1.7084E-3) =  0.08516 +(2.0292E-3) = 0.08774 +(1.4784E-3)
FDAS (10,10) 0.11545 +(1.0182E-2) + n/a 0.07075 £(2.7836E-3) +  0.04505 +(3.2457E-3) =  0.04960 £(2.1821E-4) = 0.04654 +(1.5088E-3)
(20,10) 0.08242 +(4.5718E-3) + n/a 0.06052 £(2.6429E-3) +  0.03469 +(2.8599E-3) + 0.03075 +(5.0421E-4) = 0.03058 +(1.0548E-4)
(5,10)  0.00547 +(2.4398E-4) + 0.00602 +(2.2013E-4) +  0.00572 £(4.7078E-4) +  0.00331 +(1.3029E-4) + 0.00234 +(1.5437E-4) = 0.00229 +(5.0548E-4)
dMOP1 (10,10) 0.00537 +(2.0051E-4) + 0.00521 +(2.8500E-4) +  0.00445 £(3.2341E-4) +  0.00248 +(2.8982E-4) + 0.00201 +(2.1536E-4) + 0.00132 +(1.1085E-4)
(20,10) 0.00526 +(1.6960E-4) + 0.00541 +(3.1725E-4) +  0.00399 +(1.6167E-4) +  0.00233 +(2.2689E-4) + 0.00100 +(4.9485E-4) =  0.00125 +(1.0578E-3)
(5,10)  0.01545 +(1.3509E-3) + 0.02352 +(3.0280E-3) +  0.02887 £(7.4130E-4) +  0.01293 £(1.0805E-3) = 0.01410 £(1.9161E-3) = 0.01185 +(1.1878E-3)
dMOP2 (10,10) 0.01108 +(7.3946E-4) + 0.01401 +(1.4027E-3) +  0.01454 £(2.4230E-3) +  0.00677 +(1.2095E-4) + 0.00686 +(1.4948E-4) + 0.00408 +(1.0548E-4)
(20,10) 0.00643 +(3.0659E-4) + 0.01106 +(5.3917E-4) +  0.00527 +(3.0305E-3) +  0.00390 +(5.7782E-4) + 0.00409 +(2.4693E-4) + 0.00235 +(1.2184E-4)
(5,10)  0.01374 +(9.7252E-4) + 0.01536 +(2.7923E-3) +  0.01235 £(7.8161E-4) +  0.00952 +(7.4455E-4) + 0.00962 +(1.5082E-4) + 0.00745 +(2.0541E-4)
dMOP3  (10,10) 0.00852 =+(2.5296E-4) + 0.01016 +(5.3762E-4) +  0.00861 +(2.3506E-4) +  0.00538 +(1.1194E-4) + 0.00586 +(9.3539E-5) + 0.00288 +(1.2208E-4)
(20,10) 0.00541 +(2.5690E-4) + 0.00668 +(4.6576E-4) +  0.00585 +(4.4245E-4) +  0.00441 +(6.9001E-4) + 0.00412 +(9.8636E-5) + 0.00152 +(1.0548E-4)
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Table 6.4 Continued from previous page

Prob. (74, n) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10)  0.04889 +(8.9416E-3) + 0.06463 +(2.9318E-3) +  0.06090 +(9.8470E-4) +  0.05973 +(6.0571E-2) + 0.03668 +(3.3775E-3) = 0.03397 +(2.5447E-3)
UDF1 (10,10) 0.02940 +(9.7576E-3) = 0.04513 +(3.3422E-3) +  0.04760 +(4.5930E-3) +  0.05119 4(6.3689E-2) + 0.01998 +(2.3479E-4) =  0.02695 +(2.1548E-3)
(20,10) 0.01465 +(1.8452E-3) + 0.03554 +(3.6636E-3) +  0.03324 £(1.9891E-3) +  0.01248 +(8.6211E-2) + 0.01630 +(1.8467E-3) + 0.00999 +(3.0574E-5)
(5,10)  0.04002 +(6.7952E-2) + 0.05007 +(4.2335E-2) +  0.03393 +(6.9138E-3) +  0.03333 +(2.4181E-3) + 0.03128 +(4.4846E-3) + 0.01199 +(2.0548E-3)
UDF2 (10,10) 0.02089 +(6.6172E-3) + 0.03458 +(3.2033E-2) +  0.02576 +(7.3964E-3) +  0.02046 +(2.9152E-3) + 0.00896 +(6.9268E-4) + 0.00587 +(4.5008E-4)
(20,10) 0.01347 +(1.8196E-3) + 0.02120 +(4.1479E-2) +  0.01224 £(1.7602E-3) +  0.01128 £(6.2437E-4) + 0.00885 +(3.8997E-4) + 0.00503 +(3.0155E-4)
(5,10)  0.00944 +(2.1823E-4) + 0.01017 +(1.1405E-3) +  0.01356 +(1.2008E-3) +  0.00765 +(2.1464E-4) + 0.00816 +(4.1999E-4) + 0.00654 +(1.2659E-4)
UDF3 (10,10) 0.00714 +(8.1121E-4) + 0.00948 +(8.2682E-3) +  0.01065 £(9.1529E-4) +  0.00629 +(9.6600E-4) + 0.00644 +(6.3107E-4) + 0.00518 +(3.0548E-5)
(20,10) 0.00504 +(2.5059E-4) + 0.00753 +(3.5640E-2) +  0.00748 £(3.5042E-4) +  0.00404 +(9.5900E-4) + 0.00402 +(1.1170E-4) + 0.00265 +(1.0548E-4)
(5,10)  0.01864 +(2.2137E-3) + 0.03910 +(4.7847E-3) +  0.14713 +(1.0707E-2) +  0.02165 4 (1.0772E-3) + 0.00683 +(9.7193E-4) — 0.00887 +(1.5487E-3)
UDF4 (10,10) 0.01305 +(9.4972E-2) + 0.02453 +£(2.1176E-3) +  0.00713 £(6.7877E-4) +  0.01364 £(3.0041E-4) + 0.00406 +(5.9216E-4) =  0.00428 +(3.4871E-4)
(20,10) 0.00882 +(4.7215E-3) + 0.00910 +(5.1892E-4) +  0.00626 +(3.5211E-4) +  0.00879 +(5.6600E-5) + 0.00338 +(2.8770E-4) + 0.00194 +(2.0548E-4)
(5,10)  0.03153 +(4.2705E-3) + 0.02815 +(2.2929E-3) +  0.15174 +(1.2249E-2) +  0.03099 4(6.0600E-3) + 0.03003 +(1.2180E-2) + 0.00915 +(2.0254E-3)
UDF5 (10,10) 0.02075 +(5.5717E-4) + 0.02498 +(2.5425E-3) +  0.10714 £(1.0771E-2) +  0.01981 £(1.7393E-3) + 0.02755 +(8.4907E-3) + 0.00765 +(4.0548E-4)
(20,10) 0.01120 +(1.6597E-3) + 0.02332 +(2.9693E-3) +  0.09200 £(2.5504E-3) +  0.01339 +(6.7297E-3) + 0.02089 +(1.2765E-3) + 0.00483 +(2.1540E-4)
(5,10)  0.08857 +(8.9144E-2) + 0.07765 +(3.2466E-3) +  0.11006 £(1.0999E-2) +  0.09369 +(6.2125E-3) + 0.05135 +(1.0217E-2) = 0.04541 +(5.2540E-3)
UDF6 (10,10) 0.07267 +(2.9038E-2) + 0.06976 +(3.1073E-3) +  0.08949 +(1.0349E-2) +  0.08416 +(3.8279E-2) + 0.04393 +(7.8910E-3) = 0.02848 +(4.0547E-3)
(20,10) 0.05730 +(2.7300E-3) + 0.05024 +(4.8488E-3) +  0.08173 +(3.5227E-3) +  0.07447 +(4.9588E-3) + 0.03677 +(3.0444E-3) = 0.01465 +(3.7710E-3)
(5,10)  0.29869 +(5.4075E-2) + n/a 0.12711 £(1.0099E-2) +  0.27661 +(5.3390E-2) + 0.07534 +(7.1539E-3) 0.07940 +(6.1870E-4)
UDF7 (10,10) 0.15068 +(1.8093E-2) + n/a 0.11876 +£(1.3083E-2) +  0.13130 £(1.8154E-2) + 0.05784 +(6.1458E-3) = 0.05505 +(2.0187E-3)
(20,10) 0.07494 +(7.4300E-3) + n/a 0.08473 +(5.8628E-3) +  0.06203 +(6.1615E-3) + 0.03569 +(5.6568E-3) + 0.02647 +(4.0484E-5)
(5,10)  0.24634 +(1.0553E-2) + 0.17152 +(8.3518E-3) +  0.13300 £(1.1273E-2) +  0.11195 £(1.3345E-2) + 0.06593 +(8.3796E-3) — 0.09884 +(1.0548E-2)
UDF8 (10,10) 0.10289 +(5.8429E-3) + 0.14437 +(1.1916E-2) +  0.10268 £(1.2265E-2) +  0.04789 +(8.5427E-3) + 0.03603 +(7.4343E-3) =  0.04564 +(4.8784E-3)
(20,10) 0.09060 +(9.2148E-3) + 0.14789 +(1.7902E-2) +  0.07749 +(1.1176E-2) +  0.04483 +(4.8709E-3) + 0.02481 +(9.5433E-3) =  0.02878 4(1.0549E-3)
(5,10)  0.15803 +(6.2072E-3) + 0.16688 +(5.3527E-3) +  0.09225 £(1.0811E-2) +  0.07914 £(1.0811E-2) + 0.05072 £(1.0241E-2) + 0.04110 +(4.1844E-3)
UDF9 (10,10) 0.13332 +(5.6430E-3) + 0.12769 +(5.0802E-3) +  0.07385 £(1.1940E-2) +  0.02089 +(6.7396E-3) =  0.02230 +(5.4532E-3) = 0.02299 +(4.0254E-3)
(20,10) 0.10503 +(4.3295E-3) + 0.13049 +(3.7403E-3) +  0.04426 +(1.2529E-2) +  0.03533 4(6.6312E-3) + 0.03998 +(8.5514E-3) + 0.01608 +(1.4088E-4)
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S METRIC
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Figure 6.4: S metric resume of Kruskal-Wallis test and the Bergmann-Hommels post-
hoc test which indicates the number of functions in which DIGDE outperformed,
was similar or worst than the remaining algorithms over different configurations of
problem parameters

Regarding the Maximum Spread performance metric, those results of MS were
slightly better to those obtained by Spacing metric. For MS performance metric,
higher values of MS represent that the obtained algorithm can maintain a good
coverage of the POF. From Table 6.5 it was observed that DIGDE obtains better
statistical results than the rest of the algorithms in thirteen of seventeen test prob-
lems. Furthermore, similar to the other discussed performance metrics, DNSGA-II,
DPSO and MOEA /D-CER are the less competitive algorithms in most of the pa-
rameters configurations. However, DNSGA-II covers the POF very well for three
three-objective problems, i.e., FDA4, FDA5 and UDF7 when the change frequency is
higher. This means that the change response mechanisms in DNSGA-II, MOEA /D-
CER, and DPSO may face big challenges when dynamisms drastically aggravate
population diversity.

In the case of FDA1, FDA4, dMOP2 and UDF7T test problems, the statistical re-
sults suggests that Immune GDE3 and SGEA algorithms are better than DIGDE for
the first parameter configuration (n,=10, ,=>5). However, according to the statistical
test there are not significant differences among these algorithms in such parameter

configuration.

From Figure 6.5 it can be observed that DIGDE improves its performance when
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the frequency of change is higher. That means that the algorithm was able to track
the changes even though the presence of faster and slower changes in the environment.
The statistical test also shows that DIGDE never presents poor performance with

respect to the other algorithms.



Table 6.5: MS mean and standard deviation values for all test problems on the empirical validation of DIGDE
and summary of Kruskal-Wallis test and the Bergmann-Hommels post-hoc test. “+” means that DIGDE outper-
formed the algorithm in the corresponding column. “—
outperformed DIGDE. No significant differences between DIGDE and the algorithm in the corresponding column

7

are indicated with “=". The best results are marked in boldface

means that the algorithm in the corresponding column

Prob. (74, ny) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10)  0.62235 +(8.1682E-3) +  0.40636 +(2.0300E-2) +  0.77977 +(4.2911E-2) 0.93265 +(1.3182E-2) =  0.81968 +(5.4259E-4) + 0.90345 +(2.0548E-4)
FDA1 (10,10) 0.88345 +(3.0935E-2) +  0.56704 +(7.8548E-2) +  0.91288 4(3.3560E-2) 0.97412 £(9.0135E-2) =  0.90352 +(8.3382E-3) + 0.93210 +(4.6407E-3)
(20,10) 0.92150 +(4.8908E-2) +  0.49654 +(5.8808E-2) +  0.92769 +(2.2529E-2) 0.98634 +(7.8570E-2) =  0.95122 +(1.9659E-3) + 0.97997 +(3.1054E-3)
(5,10)  0.98245 +(7.8385E-3) +  0.86561 +(2.6685E-2) +  0.88965 +(2.5059E-2) 0.99246 +(6.6847E-3) = 0.98890 +(4.8182E-3) + 0.99301 +(1.5400E-3)
FDA2 (10,10) 0.98893 +(5.3380E-3) +  0.87911 +(2.4367E-2) +  0.93198 +(2.0936E-2) 0.99369 +(6.6135E-3) + 0.99406 +(3.2695E-3) = 0.99453 +(1.1875E-3)
(20,10) 0.98995 +(4.2745E-3) +  0.92369 +(1.4964E-2) +  0.94881 +(1.8687E-2) 0.99270 +(2.2032E-3) + 0.99419 +(2.2648E-3) = 0.99603 +(5.9812E-4)
(5,10)  0.52421 +(7.3762E-2) +  0.52082 +(5.4200E-2) +  0.75452 +(2.5046E-2) 0.88604 +(2.9697E-2) + 0.89326 +(1.7593E-2) + 0.93132 +(2.4084E-3)
FDA3 (10,10) 0.69143 +(3.7662E-2) +  0.65579 £(4.1130E-2) +  0.82661 +(1.2725E-2) 0.93700 +(6.0374E-2) + 0.90901 +(1.0709E-2) + 0.95942 +(1.0548E-2)
(20,10) 0.74056 +(2.7535E-2) +  0.69282 +(4.8043E-2) +  0.85049 +(2.2670E-2) 0.94546 +(4.8849E-2) + 0.93485 +(1.0385E-2) + 0.98151 +(3.6798E-4)
(5,10)  0.99888 +(6.0068E-4) +  n/a 0.99764 +(8.0068E-4) 0.99813 +(6.1061E-4) =  0.99608 +(2.0936E-3) = 0.99541 +(2.2154E-3)
FDA4 (10,10) 0.99944 +(3.2961E-4) +  n/a 0.99816 +(5.9669E-4) 0.99854 +(2.7958E-5) + 0.99955 +(2.5616E-4) 0.99936 +(1.5410E-5)
(20,10) 0.99951 +(2.5079E-4) + n/a 0.99905 +(5.6289E-4) 0.99963 +(2.6024E-5) + 1.00000 =+(3.0786E-6) + 1.00000 +(2.9412E-5)
(5,10)  0.99846 +(2.9505E-5) +  n/a 0.99441 +(1.8777E-3) 0.99293 +(1.2279E-4) + 0.99494 +(1.2105E-5) + 0.99865 +(3.2913E-5)
FDA5 (10,10) 0.99941 +(3.3363E-5) +  n/a 0.99700 +(1.6019E-3) 0.99611 +(1.7811E-5) + 0.99864 +(7.5582E-4) + 0.99969 +(2.8213E-6)
(20,10) 1.00000 +(2.4464E-6) =  n/a 0.99834 +(9.9161E-4) 0.99792 +(9.9959E-6) + 0.99881 +(6.4694E-4) + 1.00000 =+ (1.0586E-6)
(5,10)  0.85727 +(3.5494E-3) +  0.83040 £(1.5738E-2) +  0.96681 +(1.4024E-2) 0.95912 +(1.1620E-2) + 0.98518 +(2.3625E-3) = 0.98601 +(2.0841E-4)
dMOP1 (10,10) 0.97019 +(6.3208E-2) +  0.84936 +(7.3456E-3) +  0.98364 +(2.1093E-2) 0.98606 +(1.3118E-2) + 0.99143 +(1.2321E-3) + 0.99589 +(2.0545E-5)
(20,10) 0.98821 +(1.8769E-2) +  0.86366 +(5.9869E-3) +  0.98797 +(1.1974E-3) 0.98474 +(1.4520E-2) + 0.99400 +(1.5841E-3) + 0.99899 +(1.1054E-5)
(5,10)  0.74626 +(5.5664E-3) +  0.75496 +(8.3760E-3) +  0.82508 +(2.4681E-2) 0.94210 +(7.6978E-3) = 0.94578 +(5.9814E-3) =  0.93594 +(1.0546E-2)
dMOP2  (10,10) 0.81448 +(3.5465E-3) +  0.81494 +(1.0844E-2) +  0.90941 +(2.1637E-2) 0.97881 +(5.4806E-3) + 0.97820 +(8.2784E-3) + 0.98108 +(2.1054E-4)
(20,10) 0.89850 +(6.9047E-3) +  0.81313 +(5.1935E-2) +  0.93133 4(2.4084E-2) 0.99209 +(2.7370E-3) + 0.98401 +(6.5218E-3) + 0.99699 +(2.2894E-4)
(5,10)  0.39685 +(4.2295E-2) +  0.74892 £(1.9919E-2) +  0.81465 £(7.3111E-3) 0.49983 +(7.4898E-2) + 0.81566 +(2.6049E-2) + 0.87439 +(2.1546E-2)
dMOP3  (10,10) 0.45257 +(3.8602E-2) +  0.80155 4(1.3986E-2) +  0.85553 +(2.0715E-2) 0.59693 +(1.1787E-2) + 0.90152 +(8.6113E-3) + 0.93045 +(2.0259E-4)
(20,10) 0.62611 +(1.4121E-2) +  0.83104 +(1.8449E-2) +  0.90897 +(1.4192E-2) 0.67818 +(2.6869E-2) + 0.90474 +(1.7626E-2) + 0.93879 +(1.1546E-4)

Continued on next page
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Table 6.5 Continued from previous page

Prob. (74, ny) DNSGA-II-B DPSO MOEA/D-CER SGEA Immune GDE3 DIGDE
(5,10)  0.79393 +(1.6337E-2) +  0.61536 +(6.1274E-2) +  0.81704 +(1.9016BE-2) +  0.67023 £(2.4722E-2) + 0.84462 +(3.5106E-2) = 0.86108 +(1.0574E-2)
UDF1 (10,10) 0.83590 +(1.0792E-2) +  0.66937 +(6.2007E-2) +  0.80711 +(2.6383E-2) +  0.69806 =+(2.8652E-2) + 0.85869 +(3.2111E-2) + 0.90484 +(2.1880E-3)
(20,10) 0.89881 +(1.7422E-2) +  0.78216 £(2.0173E-2) +  0.91670 £(1.1187E-2) +  0.79540 =£(2.1829E-2) + 0.91849 +(3.2497E-2) + 0.95879 +(2.1897E-4)
(5,10)  0.74683 +(2.4632E-2) +  0.64485 +(5.8477E-2) +  0.87781 +(2.1991E-2) +  0.72738 £(1.8260E-2) + 0.90291 +(1.5890E-2) = 0.91064 +(1.7544E-2)
UDF2 (10,10) 0.80924 +(6.3146E-3) +  0.80539 +(9.7187E-3) +  0.92649 +(1.8821E-2) +  0.79293 £(6.6900E-3) + 0.94084 +(1.8479E-2) + 0.95612 +(1.1581E-4)
(20,10) 0.84124 +(1.4661E-2) +  0.82190 £(1.5449E-2) +  0.92794 £(1.8408E-2) +  0.83688 £(9.6925E-3) + 0.95643 +(1.2451E-2) + 0.98598 +(1.0982E-4)
(5,10)  0.37291 +(2.8626E-2) + 0.20730 +(5.7842E-2) + 0.63416 +(3.2051E-2) + 0.41021 +(1.2273E-2) + 0.78378 +(1.5806E-2) + 0.85195 +(2.2151E-2)
UDF3 (10,10) 0.46584 +(5.3240E-3) +  0.24651 £(4.6478E-2) +  0.66980 +£(2.6487E-2) +  0.46593 =+(5.3254E-3) + 0.79704 +(1.6639E-2) + 0.87061 +(2.5401E-2)
(20,10) 0.50506 +(1.1218E-2) +  0.30948 £(4.9309E-2) +  0.73899 £(2.2551E-2) +  0.53159 £(1.9756E-2) + 0.89658 +(9.1981E-3) + 0.93989 +(1.0084E-3)
(5,10)  0.61658 +(1.9981E-2) +  0.58827 +(4.2304E-2) +  0.81900 +(2.7474E-2) +  0.56886 +(2.4692E-2) + 0.77221 +(2.3800E-2) + 0.84498 +(2.0579E-2)
UDF4 (10,10) 0.65200 +(2.1770E-2) +  0.66296 +(3.2181E-2) +  0.84336 £(3.0054E-2) +  0.61857 £(2.0534E-2) + 0.83986 +(2.6720E-2) + 0.87988 +(1.9400E-3)
(20,10) 0.66091 +(1.6987E-2) +  0.69133 £(2.1379E-2) +  0.86515 £(3.0523E-2) +  0.69385 +(2.6381E-2) + 0.86471 +(2.1077E-2) + 0.94609 +(1.1841E-3)
(5,10)  0.75138 +(2.1298E-2) +  0.58685 +(4.2034E-2) +  0.84246 +(4.3053E-2) +  0.73118 £(2.1270E-2) + 0.71618 +(1.4008E-2) + 0.78871 +(1.0570E-2)
UDF5 (10,10) 0.80994 +(1.1358E-2) +  0.61713 £(5.5014E-2) +  0.90545 £(5.8746E-2) +  0.78490 +(4.6717E-3) + 0.74628 +(2.5512E-2) + 0.87154 +(1.1058E-2)
(20,10) 0.85061 +(2.0196E-2) +  0.70194 +(4.8757E-2) +  0.90353 £(4.3193E-2) +  0.81704 =+(1.2012E-2) + 0.81785 +(1.0189E-2) + 0.90548 +(1.5480E-3)
(5,10)  0.18763 +(1.3201E-2) +  0.17849 £(2.0224E-2) +  0.19743 £(3.3622E-2) +  0.12780 +(7.5062E-2) + 0.32685 +(4.3271E-2) = 0.35587 +(3.9890E-2)
UDF6 (10,10) 0.23211 +(2.5401E-2) +  0.20881 £(2.6391E-2) +  0.22034 £(2.8674E-2) +  0.15079 £(8.9601E-2) + 0.37103 £(2.8265E-2) = 0.38008 +(2.1050E-2)
(20,10) 0.26837 +(2.9459E-2) +  0.23772 +(3.6794E-2) +  0.24566 +(3.3403E-2) +  0.24016 +(9.6588E-2) + 0.39802 +(2.1508E-2) + 0.48982 +(1.0181E-3)
(5,10)  0.98153 +(1.0933E-2) =  n/a 0.88904 +(1.4822E-2) +  0.93293 +(9.0506E-3) + 0.98287 +(2.7069E-3) 0.96489 +(3.1089E-3)
UDF7 (10,10) 0.98889 +(6.3668E-3) =  n/a 0.94867 +(1.3823E-2) =  0.99391 +(2.1088E-3) =  0.98872 +(1.8552E-3) = 0.98915 +(3.5411E-2)
(20,10) 0.99134 +(4.6053E-3) =  n/a 0.95696 +(1.1728E-2) +  0.99279 +(4.4401E-3) =  0.99092 +(3.4084E-3) = 0.99261 +(4.1041E-3)
(5,10)  0.69442 +(1.0131E-2) +  0.55508 £(2.5810E-2) +  0.66389 £(3.0374E-2) +  0.68295 =+(4.2134E-2) + 0.68783 +(2.8814E-2) = 0.70581 +(2.1098E-2)
UDF8 (10,10) 0.71819 +(1.5416E-2) +  0.60013 £(9.9695E-3) +  0.70820 +(4.4613E-2) +  0.69564 =(4.4435E-2) + 0.81433 +(8.5830E-3) = 0.81812 +(3.0548E-2)
(20,10) 0.75810 +(2.8309E-2) +  0.63830 +(2.6590E-2) +  0.78344 +(2.7719E-2) +  0.77150 +(3.1049E-2) + 0.83620 +(3.0974E-2) + 0.88789 +(1.1168E-3)
(5,10)  0.76996 +(3.5852E-2) +  0.68097 £(3.5161E-2) +  0.76608 £(3.9985E-2) +  0.85283 £(1.5126E-2) + 0.84875 +(3.4017E-2) + 0.89810 +(1.0245E-3)
UDF9 (10,10) 0.79268 +(3.7433E-2) +  0.75056 +(4.0319E-2) +  0.81523 +(4.1850BE-2) +  0.87967 +(2.0748E-2) + 0.90252 +(1.4780E-2) + 0.93051 +(1.0132E-4)
(20,10) 0.85210 +(3.2930E-2) +  0.76542 +(5.3925E-2) +  0.84384 +(3.7560E-2) +  0.90619 +(1.2214E-2) + 0.92455 +(1.2259E-2) + 0.97748 +(2.0587E-3)
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Figure 6.5: MS metric resume of Kruskal-Wallis test and the Bergmann-Hommels
post-hoc test which indicates the number of functions in which DIGDE outperformed,
was similar or worst than the remaining algorithms over different configurations of
problem parameters

Finally, Table 6.6 presents the summary of the Two-Set Coverage metric statis-
tical results and the results of the Wilcoxon test applied to such results are shown
in Figure 6.6. Since C-metric consist of all the pairwise combinations of the 30
independent runs executed by each algorithm, the experimental design regarding C-
metric tends to grow significantly. For such reason, in order to apply the C-metric,
the best three algorithms obtained from the previous experiments were selected for
comparison purposes, i.e., the C-metric is computed over the SGEA, Immune GDE3
and DIGDE algorithms.

Table 6.6, shows the achieved results between each comparison in both directions
in a specific test problem over three different configurations of problem parameters.
The comparison of algorithms that obtains a higher value of non-dominated solu-
tions is marked in boldface and means that the first algorithm in the comparison is

considerably better than the second one.

From Table 6.6, is also observed that, when DIDGE is compared with SGEA,
DIGDE always obtained better results independently of the configuration of param-
eters used. However, according to the Wilcoxon test, DIGDE was similar to SGEA
in four and three test problems for parameter configurations 7,=5, n,=10 and 7,=10,

n;=10, respectively, i.e., when changes in the environment are more frequent. On
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the other hand, in the case of less frequent changes, DIGDE outperformed SGEA
in all test problems. The results in Table 6.6 also suggest that DIGDE obtained
better results than SGEA in three-objective problems, i.e., FDA4, FDA5 and UDF7.
The worst performance of SGEA could be attributed to the fact that SGEA does
not increase diversity when changes occur. Therefore, it is vulnerable to the loss
diversity.

Regarding the second most competitive algorithm (Immune GDE3), the results
of this binary metric showed that, when Immune GDE3 is compared against SGEA,
both algorithms present a similar behavior in most test problems especially when
the frequency of change is high. Furthermore, it was also observed that in FDAT,
FDA3, dMOP2 and UDF4, SGEA was better than Immune GDE3 even though
the frequency parameter changes. However, the statistical test showed that both
algorithms have similar behavior in such test problems, with exception of FDA3
when the first parameter configuration is used. The statistical validation showed in
Fig. 6.6 confirms such findings.

On the other hand, as regards to DIGDE and Immune GDE3 comparison results
presented in Table 6.6 and Fig. 6.6 indicate that DIGDE was better than Immune
GDES3 in most test problems, and its performance tends to improve when the changes
are less frequent. Such behavior means that the proposal of the new selection mech-
anism implemented in DIGDE helps the algorithm to obtain a better percentage
and distribution of non-dominated solutions when it is compared with its previous

version (Immune GDE3).

Table 6.6: C' mean and standard deviation values for all test problems and summary
of Kruskal-Wallis test and the Bergmann-Hommels post-hoc test. “+” means that
DIGDE outperformed the algorithm in the corresponding row. “—”" means that the
algorithm in the corresponding row outperformed DIGDE. No significant differences

between DIGDE and the algorithm in the corresponding row are indicated with “=".
The best results are marked in boldface

Prob.

Algorithm comparison

(5,10)

(10,10)

(20,10)

FDA1

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

0.991961 +(1.8405E-3)
0.963352 +(5.6233E-3)
0.962868 +(6.0548E-3)
0.995036 =+ (1.1584E-3)
0.988916 +(2.0584E-3)
0.995231 £ (1.0871E-3)

0.966830 +(4.3173E-3)
0.923064 +(1.0587E-2)
0.903529 +(1.0584E-2)
0.960084 +(1.0889E-2)
0.936264 +(3.0656E-3)
0.990595 1 (4.05929-4)

0.942406 +(1.5498E-2)
0.909849 +(2.0458E-2)
0.839845 +(1.0299E-2)
0.950990 +(1.0554E-3)
0.857941 +(3.0555E-3)
0.930481 +(1.0491E-3)

Continued on next page
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Table 6.6 Continued from previous page

Prob.

Algorithm comparison

(5,10)

(10,10)

(20,10)

FDA2

FDA3

FDA4

FDAS5

dMOP1

dMOP2

dMOP3

UDF1

UDF2

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

0.911139 4(1.3562E-2)
0.926063 +(1.3546E-2)
0.871180 £ (1.0596E-2)
0.940941 +(1.0875E-3)
0.868841 +(2.5451E-2)
0.940544 +(1.0065E-2)

0.911128 +(1.9692E-2)
0.806247 4(1.1330E-2)
0.905441 4-(1.0545E-2)
0.920410 +(1.5454E-2)
0.851557 4-(1.0548E-2)
0.942065 +(1.8548E-2)

0.780729 £(1.2128E-2)
0.868239 +(1.6279E-2)
0.770548 +(2.0548E-2)
0.899811 4 (1.7054E-2)
0.862206 4 (1.1584E-2)
0.880541 +(4.0574E-3)

0.825903 4-(1.3543E-2)
0.917355 +(1.0916E-2)
0.832051 4(1.2165E-2)
0.906444 +(1.6561E-2)
0.906561 +(2.0065E-2)
0.892015 £(1.5465E-2)

0.833521 +(8.1681E-3)
0.814732 +(1.4239E-2)
0.784307 +(1.1878E-2)
0.930454 +(1.0231E-2)
0.767235 +(1.5451E-2)
0.945546 £ (2.0548E-3)

0.854484 +(1.3136E-2)
0.811561 +(1.9774E-2)
0.849854 =4 (1.4844E-2)
0.864841 +(1.2558E-2)
0.828784 +(1.1862E-2)
0.898944 +(4.3265E-3)

0.806025 4-(2.1232E-2)
0.832884 +(1.8329E-2)
0.751668 4-(1.5456E-2)
0.940544 +(1.6564E-2)
0.840228 £(1.0606E-2)
0.926294 +(1.5656E-2)

0.820529 +(1.7119E-2)
0.884730 +(2.1351E-2)
0.756012 +(1.3806E-2)
0.905456 +(1.0126E-2)
0.801197 +(1.3206E-2)
0.926561 +(1.1167E-2)

0.821398 +(1.4413E-2)
0.773005 +(2.4369E-2)
0.737822 +(1.4442E-2)
0.970548 +(1.1539E-2)
0.737981 +(1.0696E-2)
0.978910 4 (1.0498E-2)

0.929164 +(1.3321E-2)
0.903684 +(2.2085E-2)
0.852491 =+ (1.0895E-2)
0.954847 +(1.8748E-2)
0.854810 +(1.8515E-2)
0.931441 +(1.9781E-2)

899714 +(1.6227E-2)
838132 £(1.9439E-2)
818781 +(2.0654E-2)
983012 +(1.2265E-2)
838113 +(1.0545E-2)
949980 +(1.5460E-2)

oo oo oo

815766 £ (1.8865E-2)
832852 +(1.9172E-2)
849471 £(1.0655E-2)
854819 +(2.4984E-2)
840321 +(1.1545E-2)
870413 +(1.2295E-4)

oo oo oo

859008 +(1.0413E-2)
866713 +(1.0558E-2)
870106 =+ (1.0655E-2)
879889 +(1.1656E-2)
899899 +(2.0965E-2)
901008 +(1.0266E-2)

coco0ooco o

835252 +(1.0633E-2)
852669 +(1.2314E-2)
766504 +(1.0656E-2)
926891 +(2.0545E-2)
781478 +(1.3551E-2)
935498 +(1.0553E-2)

oo oo 0o

.844481 +(1.2954E-2)
820661 +(1.3311E-2)
804394 +(1.0985E-2)
871556 +(1.1598E-2)
819809 +(1.2659E-2)
880655 +(1.4056E-2)

oo oo oo

785708 +(1.6507E-2)
897713 +(1.6396E-2)
785216 +(1.0695E-2)
930664 +(1.4066E-2)
870023 £(1.0955E-2)
906565 1 (1.0655E-3)

coco0ooo o0

781230 +(1.9107E-2)
922978 +(1.7289E-2)
746988 +(1.2164E-2)
934845 +(3.0545E-3)
824828 +(1.7583E-2)
903254 +(6.0548E-3)

oo oo oo

769526 +(1.3568E-2)
934562 +(1.3639E-2)
703061 £ (1.8038E-2)
954941 +(6.2025E-3)
768770 +(3.2274E-2)
945101 +(1.0545E-2)

ocoo0ooo o

0.854041 4 (1.1724E-2)
0.875404 +(1.5865E-2)
0.854881 +(2.0952E-2)
0.988456 1 (1.9580E-2)
0.858410 =+ (1.0888E-2)
0.941025 +(1.5480E-2)

785305 +(1.5710E-2)
804093 +(1.6565E-2)
781109 +(1.05454-2)
920548 +(1.1514E-2)
810989 =4 (1.0545E-2)
920548 £ (1.9412E-2)

oo oo oo

814193 +(1.3812E-2)
824580 +(1.5626E-2)
770684 +(1.0656E-2)
871848 £(2.1562E-2)
834584 +(1.4806E-2)
908970 +(1.1878E-2)

oo oo oo

857492 4(1.3103E-2)
876694 1 (1.2084E-2)
875656 =+ (5.0656E-3)
910656 +(1.0879E-4)
905484 =+ (1.5454E-2)
930206 +(1.0656E-3)

oo oo oo

793066 +(1.5755E-2)
890202 +(8.5290E-3)
749261 +(1.5487E-2)
945485 +(1.3194E-2)
794847 +(1.5546E-3)
950547 +(1.0565E-2)

oo oo oo

.842351 +(1.8005E-2)
836668 =+ (1.8042E-2)
795229 4 (1.2546E-2)
877881 +(1.1995E-2)
820331 +(1.2989E-2)
910554 +(1.0029E-3)

oo oo oo

855593 +(1.1188E-2)
887740 +(9.3129E-3)
758519 4 (1.0669E-2)
954584 +(1.0654E-2)
882646 +(9.0924E-3)
932661 +(1.5651E-2)

oo oo o0

803099 +(1.8117E-2)
893423 +(2.2094E-2)
770594 +(1.4571E-2)
954065 +(1.5060E-2)
807849 +(1.2656E-2)
930622 +(1.0548E-2)

oo oo oo

744203 4(1.4945E-2)
945866 +(1.2857E-2)
689897 +(1.1805E-2)
0.960545 +(1.0545E-2)
0.871205 =+ (1.2544E-2)
0.957130 +(4.0545E-3)

oo 0

Continued on next page
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Table 6.6 Continued from previous page

Prob.

Algorithm comparison

(5,10)

(10,10)

(20,10)

UDF3

UDF4

UDF5

UDF6

UDF7

UDF8

UDF9

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

SGEA vs Immune GDE3
Immune GDE3 vs SGEA
SGEA vs DIGDE

DIGDE vs SGEA
Immune GDE3 vs DIGDE
DIGDE vs Immune GDE3

0.870535 4(1.9071E-2)
0.882029 +(9.9941E-3)
.892234 +(1.5115E-2)
.933029 +(2.0544E-3)
900254 =4 (1.4299E-2)
.960544 1-(5.0878E-3)

oo oo

.914163 +(2.1304E-2)
852454 4(2.3445E-2)
.928748 +(2.0545E-2)
920541 4(1.5451E-2)
854784 4(1.0659E-2)
945414 +(3.0554E-3)

oo o000

681967 4 (1.2640E-2)
.973408 £ (7.7363E-3)
658041 =4 (1.0544E-2)
.930645 1 (5.1544E-3)
899340 4 (1.3800E-2)
906596 1 (2.0545E-3)

oo oo oo

e

760913 £(1.3777E-2)
.827129 +(1.7264E-2)
741268 +(2.1314E-2)
.840178 +(3.0548E-2)
0.894439 +(2.3577E-2)
950205 +(1.1221E-2)

o © o

°

745583 +(1.7843E-2)
791355 +(2.3062E-2)
712375 +(2.1054E-2)
.890548 +(2.1548E-2)
879241 +(1.1848E-2)
900889 +(1.0548E-2)

oo oo 00

.896725 +(1.3100E-2)
.913814 +(1.4306E-2)
855952 +(1.4514E-2)
.957889 4 (1.0659E-2)
819285 +(1.8841E-2)
.963615 +(4.0874E-3)

oo o0ooco o

768925 +(1.5395E-2)
.871057 +(8.1720E-3)
619072 4-(2.1448E-2)
.970874 +(1.5487E-2)
734300 £(3.7484E-2)
0.920781 +(1.0584E-2)

cooo0o0

0.805049 +(1.7513E-2)
0.893040 +(1.2218E-2)
0.850664 =+ (1.8032E-2)
0.942341 +(1.0326E-2)
0.909142 +(1.3624E-2)
0.964841 +(4.0659E-3)

935850 +(1.8729E-2)
902755 +(2.3922E-2)
980446 +(3.2390E-3)
983107 +(5.0548E-3)
956139 +(1.1294E-2)
970504 +(6.0987E-3)

oo oo oo

792302 +(1.9184E-2)
890806 +(1.2482E-2)
798484 +(1.4410E-2)
940087 £(2.0545E-2)
871759 +(1.4862E-2)
890548 =+ (1.0548E-2)

oo oo oo

813123 +(2.0093E-2)
940342 +(2.1557E-2)
735918 +(2.3001E-2)
930545 +(2.0545E-2)
884625 £ (1.2903E-2)
920057 +(1.0548E-2)

coco0ooo o

720026 +(2.0271E-2)
826797 +(1.6951E-2)
697157 +(1.9814E-2)
959015 +(1.0148E-2)
930548 +(1.0548E-2)
945878 +(1.8487E-2)

oo oo 0o

886523 £(1.9222E-2)
904824 +(1.4333E-2)
800927 £(5.6444E-4)
970656 +(1.0548E-2)
835824 +(2.6897E-2)
950659 +(1.4198E-3)

0o ocoooo

693631 +(1.9334E-2)
923946 +(1.8693E-2)
644666 +(2.3659E-2)
949898 +(1.0484E-2)
812655 +(5.0878E-3)
900891 +(1.7595E-3)

coco0oooo

0.829534 +(2.1164E-2)
0.890002 +(1.3104E-2)
787511 £(1.0546E-2)
954810 +(1.0676E-2)
830943 +(1.0659E-2)
950659 +(2.0645E-2)

oo oo

927725 +(1.7138E-2)
906425 +(1.6879E-2)
855376 4 (1.0988E-2)
951048 1 (3.0089E-3)
843758 £ (1.6796E-2)
960870 £ (5.0659E-3)

oo oo oo

758903 £(1.2331E-2)
903854 +(1.7168E-2)
720499 +(1.6480E-2)
918910 £ (3.1854E-2)
867397 +(1.7080E-2)
927816 1 (2.0848E-2)

oo oo oo

824552 4 (1.7247E-2)
904467 +(1.8844E-2)
612049 +(2.1975E-2)
920584 +(1.0878E-2)
780223 +(2.2124E-2)
930548 +(1.8440E-2)

oo oo oo

722268 +(2.8751E-2)
825642 +(1.8525E-2)
623317 +(1.9839E-2)
938740 +(6.1018E-3)
781162 +(1.7043E-2)
949898 +(4.2058E-3)

oo oo oo

838791 =+ (1.4662E-2)
867685 1 (9.6073E-3)
688988 +(9.5314E-2)
950848 +(1.5361E-3)
739925 +(1.0548E-3)
955490 +(2.1780E-3)

oo oo oo

713509 +(1.8556E-2)
900308 +(1.8127E-2)
574661 4 (2.0209E-2)
0.960848 +(1.5592E-2)
0.754333 £(1.0659E-2)
0.923055 +(1.0249E-3)

oo 0o
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C-METRIC
18 DIGDE vs ImmuneGDE3 DIGDE vs SGEA ImmuneGDE3 vs SGEA
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Figure 6.6: C-metric resume of Kruskal-Wallis test and the Bergmann-Hommels
post-hoc test which indicates the number of functions in which DIGDE outperformed,
was similar or worst than the remaining algorithms over different configurations of
problem parameters

6.4.3 Further discussions

The previous experimental comparison and analysis have shown that DIGDE is ca-
pable of solving different types of DMOPs. Especially, DIGDE works very well on
DMOPs without strong variable linkages, like most of the FDA and dMOP test
problems. However, experimental comparisons on the UDF test problems, which
have strong variable-linkage, show that DIGDE obtains better results than the rest
of the algorithms. DIGDE also obtains competitive results even though the change
frequency parameter changes. Moreover, the variation of the frequency parameter
does not cause diversity loss in DIGDE. Therefore, DIGDE can track the moving
POSs and POFs effectively. On the other hand, from the obtained results, it can be
observed that DIGDE was better than its predecessor (Immune GDE3). That means
that the incorporation of IGD indicator in the selection mechanism of DIGDE im-
proves their performance significantly. The IGD metric helps the algorithm to obtain
solutions closer to the POF, with a better distribution over the POF. The results
obtained by each metric of the experimental design confirm such findings.

From the results previously presented, it can be seen that DIGDE, Immune GDE3
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and SGEA were the best algorithms solving the DMOPs selected for the experimental
design. For a graphical view of algorithms’ tracking ability over changing environ-
ments, POFs obtained by the aforementioned algorithms over six representative test
problems are presented in Fig. 6.8,

Each problem selected represents a different type of DMOP; i.e., type I, type II
and type III test problems. Fig. 6.8 shows that DIGDE is very capable of tracking
environmental changes, obtaining solutions with good distribution over the POF.
Furthermore, from Fig. 6.8 it can be also observed that Immune GDE3 presents a
competitive performance in the new selected test problems. The algorithms’ tracking

ability confirms the obtained results by proximity and distribution metrics.

6.5 Algorithm complexity

All the experiments of this thesis were executed on a PC with Intel Core i7-2635
(2.0GHz) CPU and 8 GB RAM using macOS Sierra 10.12.5 OS. The algorithm pro-
grams of DNSGA-II versions, DPSO-4, MOEA /D-BR, Immune GDE3 and DIGDE,
were implemented and executed in MATLAB R2016b. The SGEA program was
executed using C++ because the original program from the authors was used for
the experiments. The computational complexity of the compared algorithms was
calculated based on the method proposed in the technical report of the CEC 2017
competition [3]. Such method has been proposed to evaluate and compare the com-
plexity of algorithms in recognized competitions since 2005, independently of the
platform in which they had been implemented. More specifically, 70 is the execu-
tion time of running one million evaluations of a basic mathematical expression. T'1 is
the time to execute 200,000 evaluations of function UDF1. To compute 7T'1, function
UDF1 was selected because it represents the features of most of the test problems.
Finally, T2 is the mean time to execute UDF1 function with each algorithm over five
independent runs. A summary of the obtained results is shown in Table 6.7. From
such table, it was observed that the computational time is high for most of the algo-
rithms, including Immune GDE3 and DIGDE. The computational time of DIGDE
is slightly higher than the computational time of Immune GDE3. This increment in

the computational time is mainly attributed to the incorporation of the IGD metric
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Figure 6.7: Obtained POFs by the three best algorithms on different representative
test problems with n; = 10 and =, = 10.
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Figure 6.8: Obtained POFs by the three best algorithms on different representative
test problems with n, = 10 and 7, = 10.

in DIGDE selection mechanism. On the other hand, SGEA algorithm obtains the

best computational time.

Table 6.7: Algorithm run-time complexity results

Algorithm TO T1 | T2 (T2-T1)/TO
DNSGA-II-A 785.2401 | 9086.486111
DNSGA-II-B 803.8584 | 9301.975694
DPSO-4 568.2129 | 6574.597222
MOEA/D-BR | 0.0864 | 0.1677 | 518.8979 | 6003.821759
MOEA/D-CER 602.4875 | 6971.293980
Immune GDE3 225.4639 | 2607.594907
DIGDE 368.1082 | 4258.570601
SGEA 0.1725 | 0.1832 | 115.7229 | 669.7953623
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6.6 Summary

There has been a significant amount of research work in DMO. However, there is a
lack of indicator-based algorithms in the field of DMO (see Section 4.3). Therefore,
in this chapter, a new DMOEA based on IGD indicator has been proposed.

The resulting DMOEA called DIGDE (Distance-based Immune Generalized Dif-
ferential Evolution) is an improved version of the previously proposed DMOEA called
Immune GDE3 (see Chapter 5). The main feature of DIGDE is the use of the IGD
indicator in their selection mechanism. The empirical validation of DIGDE is also
presented in this chapter. To evaluate the performance of DIGDE, the results ob-
tained by five performance metrics were compared against to those obtained by other
popular DMOEAs, including Immune GDE3. Experimental results demonstrated
that DIGDE significantly improved its performance in most of test benchmark prob-
lems. Therefore, DIGDE is very promising solving DMOPs. Furthermore, DIGDE
presented better robustness and good performance in the presence of different change
frequencies.

Since IGD metric measures not only the approximation to the POF but also the
distribution over the POF, it is a promising metric to propose the new selection
mechanism used by DIGDE. Therefore, the improved performance of such algorithm
could be attributed to the selection based on IGD contributions.

The next chapter summarizes the research of this thesis and presents the obtained

conclusions. Furthermore, some possible paths for future work are presented.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Evolutionary Multi-objective Optimization has been extensively studied in the last
few years. However, there is a research gap to tackle multi-objective optimization
in dynamic environments using nature-inspired algorithms. The main goal of this
thesis was to contribute in this research area by proposing algorithms able to tackle
DMOPs with competitive results. Therefore, in this thesis, the proposal of two dif-
ferent DMOEASs was presented. The first DMOEA, called Immune GDE3, consists of
a hybrid approach which combines the advantages of Differential Evolution and the
Artificial Immune System. In Immune GDE3, the Generalized Differential Evolution
(GDE3) algorithm was adopted as MOP optimizer, while an immune response based
on the clonal selection principle was used as change reaction mechanism (see Chap-
ter 5). On the other hand, the proposal of a new DMOEA based on performance
indicator was also presented. The indicator-based DMOEA was called DIGDE. This
algorithm is an improved version of Immune GDE3. The main difference with re-
spect to Immune GDE3 is based on the use of IGD contributions in its selection
mechanism. Therefore, different from Immune GDE3 which uses only crowding dis-
tance, DIGDE uses the contributions to IGD to select the best individuals for next
generations (see Chapter 6).

Both algorithms were empirically validated using a set of benchmark problems

representative of the main features presented in real-world dynamic optimization
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problems. Furthermore, the experiments were carried out using different performance
metrics in order to evaluate the ability of the algorithms to track the changes in the
Pareto front and the Pareto Set and its capacity to find a good distribution of
solutions through the Pareto front obtained. The results obtained by these metrics
were computed for each algorithm to carry out a direct comparison against other
state-of-the-art algorithms. From the obtained results, statistically validated, it was
found that Immune GDE3 and DIGDE were very promising for dealing with DMOPs.

Different issues of the proposed approaches were analyzed: (1) the general perfor-
mance of both algorithms in comparison with other state-of-the-art algorithms, using
a novel set of benchmark functions, (2) the sensitivity of both algorithms to different
change severities and frequencies, (3) the role of their change reaction mechanism
based on an immune response and (4) the improvement capability of Immune GDE3
using a performance metric in its selection mechanism. In this thesis, an adaptation
of a binary metric to evaluate the performance of DMOEAs was also included.

The overall results of the experiments carried out lead to the following findings:

e Despite the different nature of the POF and the POS, Immune GDE3 and
DIGDE were able to track the Pareto optimal front in most of the test prob-
lems, obtaining competitive results according to all the metrics (including the
most challenging problems, Type III test instances with discrete and trigono-

metric nature).

o The specialized literature suggests that using binary metrics strengthen empir-
ical evidence when MOEAS are tested and compared [109]. This research study
provides interesting results, for example, Immune GDE3, DIGDE and SGEA
achieve similar performance based on unary metrics. However, considering the
binary metric (C-metric), Immune GDE3 and DIGDE outperform SGEA in
most of the problems. Adapting binary metrics, such as two-set coverage, for
dynamic optimization allows to confirm the achieved performance. Thus, using
unary metrics provides a good evidence of algorithmic performance but does
not necessarily provide a strong basis for comparison among MOEAs. There-
fore, the usage and proposals of binary performance measures in DMOO are

also promising research areas in order to improve the empirical validation of

DMOEAs.



Chapter 7. Conclusions and Future Work 148

o For all metrics and test problems, it was clearly observed that in most cases,
DIGDE and Immune GDE3 were in first and second rank, respectively. The
good performance of these two algorithms could be explained as follows: both
algorithms maintain a suitable population diversity, it could be attributed to
the fact that those algorithms employ a memory to store the best members in
the population and use the cloning process to generate clones of those members.
Before a change occurs, the algorithms store the best solutions and maintain
these solutions for next iterations. After a change occurs, both algorithms take
advantage of the solutions in memory if the severity of changes does not change
significantly, or use the cloning process, otherwise. Also, Immune GDE3 uses
the non-dominance criteria and crowding distance to approximate and main-
tain a good distribution of solutions, respectively. On the other hand, DIGDE
uses the IGD contributions to approximate the solutions to the POF, since
IGD also measures the diversity of solutions over the POF. The incorpora-
tion of IGD in DIGDE selection mechanism also allows a good diversity of the

obtained solutions. The statistical results confirm such findings.

e The poor performance of DNSGA-II versions can be justified as follows. DNSGA-
IT versions use a diversity introduction scheme. This kind of approaches de-
pends on the ability of the optimization algorithm (NSGA-II in this case) to
detect problem changes [77]. So that, it is possible that such algorithm may
not be competitive when the problem changes are severe or very frequent. For

the configuration (n, = 5, 7, = 5), the frequency of changes was very frequent.

o« DPSO was competitive, however, it could present problems to maintain the
good distribution of solutions in some cases, especially in problems with a
discrete nature of the POF, and can not be applied in problems with three or

more objectives.

e SGEA showed a good performance regarding proximity metrics. However,
its performance decreased considerably according to the distribution metrics.
This behavior could be explained because SGEA does not have a mechanism
to increase diversity when changes occur. Therefore, it seems to be vulnerable

to loss of diversity.
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o The variation of test problems parameters favored the good performance of the
compared algorithms because the changes were less frequent and less severe.
However, the obtained results showed that Immune GDE3 and DIGDE were
not sensitive to different combinations of change severity and change frequency.

In contrast, the performance of MOEA/D-BR, MOEA /D-CER and SGEA

tends to decrease in the presence of frequent changes in the environment.

o Generally, the performance of the algorithms decrease for configuration (n; = 5,
7, = 5), i.e., when the severity was considerable and the changes were very
frequent. The effect of 7; is more significant than n; in the difficulty of the test

problems.

e The change reaction mechanism based on immune response involved in Im-
mune GDE3 and DIGDE plays an important role to react to the changes in
the environment and to preserve the diversity of the population in the set of
DMOPs solved in this study. The combination of immune response and GDE3
was a good alternative to solve this kind of problems. The third experiment in
the empirical validation of Immune GDE3 confirms such finding (see Section
5.3.3).

o The thorough empirical assessment shows that Immune GDE3 and DIGDE are
highly competitive optimization algorithms that can quickly converge to new
POF positions. Furthermore, such assessment also provides significant insights
on Differential Evolution as a very capable searching algorithmic technique
when dealing with dynamic environments. DE has shown its ability to tackle

static optimization problems and now looks like a competitive approach for

DMOPs.

e« In DMOO a faster convergence is needed in order to track environmental
changes as quickly as possible. In experiment one of the empirical valida-
tion of Immune GDE3, Immune GDE3 is compared against other DMOEAs
with very severe and frequent changes. Thus, algorithms with faster conver-
gence are needed. GDE3 and MOEA /D are known as algorithms with faster

convergence [101],[57]. The rest of the algorithms converge more slowly when
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compared to GDE3 and MOEA/D. Such convergence behavior could also jus-
tify the good performance of Immune GDE3, DIGDE and MOEA /D versions
against the rest of DMOEAs.

From the previous findings it was concluded that, in general, the DE-based
DMOEAs presented in this thesis showed a highly competitive performance when
they were compared against other algorithms of the state-of-the-art. The immune
response included in Immune GDE3 and DIGDE is a good alternative to track the
new position of solutions in the search space in spite of very frequent changes in
the environment. A good distribution of solutions through the Pareto fronts in each
time step is also one of the main advantages of both algorithms in comparison with
the rest of the algorithms. DE is a promising optimization algorithm not only to
tackle static optimization problems but also to deal with DMOPs. Therefore, at this
point, it can be concluded that the hypothesis initially proposed in this thesis was
confirmed. In addition, all the objectives set and the expected contributions were

successfully reached.

7.2 Future work

Part of the future work includes solving other test problems with different character-
istics, e.g., DMOPs with dynamic constraints and dynamic many-objective problems.
Also, other DMOEASs based on different performance indicators could be proposed.
On the other hand, since there is a lack regarding test instances and appropriate per-
formance measures, the development of test instances with more than two objectives
is an open research area. Furthermore, specific performance metrics for dynamic
multi-objective optimization should be proposed. Adopting parameter control tech-

niques for the proposed algorithms is also part of our research interest.
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