
 UNIVERSIDAD VERACRUZANA

CENTRO DE INVESTIGACIONES EN INTELIGENCIA

ARTIFICIAL

JaCa-DDM: a framework for Distributed
Data Mining based on the Agents &

Artifacts paradigm

TRABAJO RECEPCIONAL EN LA MODALIDAD DE

TESIS

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE

DOCTOR EN INTELIGENCIA ARTIFICIAL

PRESENTA

M.I.A. HÉCTOR XAVIER LIMÓN RIAÑO

DIRECTOR

DR. ALEJANDRO GUERRA HERNÁNDEZ

CODIRECTOR

DR. NICANDRO CRUZ RAMÍREZ

 XALAPA, VERACRUZ AGOSTO 2017

JaCa-DDM: a framework for Distributed
Data Mining based on the Agents &

Artifacts paradigm

By: Héctor Xavier Limón Riaño
Director: Dr. Alejandro Guerra Hernández
Co-director: Dr. Nicandro Cruz Ramı́rez

July 10, 2017

Contents

List of figures IV

List of tables VI

1. Introduction 1
1.1. Problem statement . 1
1.2. Hypothesis . 3
1.3. Justification . 3
1.4. Objectives . 4
1.5. Background . 4

1.5.1. Distributed Data Mining . 5
1.5.2. Agent-based DDM . 7
1.5.3. BDI agency . 7

1.6. State of the art . 10
1.6.1. Agent Mining . 11
1.6.2. Related work . 13

1.7. Scope and limitations . 15
1.8. Document organization . 15

I. Method 17

2. JaCa model 19
2.1. Jason . 19

2.1.1. Architecture . 20
2.1.2. Reasoning cycle in Jason . 23
2.1.3. Agent communication in Jason . 26

2.2. CArtAgO and endogenous environments 27

3. JaCa-DDM 31
3.1. JaCa-DDM Model . 31
3.2. JaCa-DDM Architecture . 32

3.2.1. Artifacts. 33
3.2.2. Agents. 34
3.2.3. Configuration . 35
3.2.4. JaCa-DDM Workflow . 38

I

4. JaCa-DDM strategies 42
4.1. Centralized strategies . 44

4.1.1. Centralized strategy . 44
4.1.2. Centralized Bagging . 45

4.2. Centralizing strategies . 47
4.2.1. Centralizing strategy . 47
4.2.2. Round strategy . 48

4.3. Meta-learning strategies . 49
4.3.1. Distributed Bagging . 50
4.3.2. Distributed Random Forest . 52

4.4. Windowing-based strategies . 53
4.4.1. Counter strategy . 57
4.4.2. Round Counter . 58
4.4.3. Parallel Round Counter . 59
4.4.4. GPU enhanced Windowing strategies 60

4.5. Learning strategies summary . 68

5. Validation and analysis methods 70
5.1. Cross validation . 70
5.2. Wilcoxon signed-rank test . 71
5.3. Forest plots . 72

II. Experiments 74

6. General experiments 76
6.1. Methodology . 76
6.2. Results . 77
6.3. Discussion . 80

7. GPU and large datasets 86
7.1. Methodology . 86

7.1.1. Case study 1: known datasets . 87
7.1.2. Case study 2: pixel-based segmentation 87

7.2. Results & discussion . 90
7.2.1. Case study 1: known datasets . 90
7.2.2. Case study 2: pixel-based segmentation 92

III. Conclusions and future work 95

8. Conclusions 97

II

9. Future work 100
9.1. Windowing analysis . 101
9.2. Extending the JaCa distributed capabilities 103

9.2.1. Formal description . 104
9.2.2. Quiting workspaces . 107
9.2.3. Implementation . 108

9.3. JaCa-DDM Web-based GUI . 110

IV. Appendix: accepted papers 122

III

List of Figures

2.1. The JaCa model . 20
2.2. Types of AgentSpeak (L) terms in Jason. 22
2.3. Agent reasoning cycle in Jason . 24
2.4. Graphical representation of an artifact. 28
2.5. The Agents and Artifacts meta-model. 29
2.6. Current CArtAgO environment model. 30

3.1. An overview of the JaCa-DDM architecture. 33
3.2. Contact person agent. 36
3.3. XML schema of the strategy deployment. 37
3.4. XML schema of an strategy. 37
3.5. Workflow step 1: Deployment of artifacts and agents. 39
3.6. Workflow steps 3 and 4. 40
3.7. Workflow step 5. 41

4.1. Centralized strategy sequence diagram. 45
4.2. Centralized bagging strategy sequence diagram. 46
4.3. Centralizing strategy sequence diagram. 48
4.4. Round strategy sequence diagram. 49
4.5. Distributed bagging strategy sequence diagram. 51
4.6. Distributed Random Forest strategy sequence diagram. 53
4.7. Windowing-based strategies general sequence diagram. 55
4.8. Auto-adjust method sequence diagram. 56
4.9. Counter examples gathering workflow. 58
4.10. The round counter strategy sequence diagram. 59
4.11. The parallel round counter strategy sequence diagram. 61
4.12. Alike counter examples. 62
4.13. Counter examples searching executed at each Windowing iteration. . . . 65
4.14. Parallel Counter GPU strategy sequence diagram. 66

5.1. Example of a forest plot . 73

6.1. Results for accuracy and ratio of training examples used. 81
6.2. Suggested correlation between accuracy and number of examples used. . . 82
6.3. Correlation plot of accuracy and number of examples used. 83
6.4. Results for the ratio of process time, and ratio of generated traffic. 84

7.1. Example of a sequence of colposcopic images. 89

IV

9.1. Correlation plot of accuracy and number of examples used from section 6.3.102
9.2. The intented view of an endogeneous environment. 105
9.3. Main screen of the new Web-based GUI for JaCa-DDM. 111
9.4. Experiment configuration wizard. 112
9.5. History results screen. 113

V

List of Tables

2.1. The BNF syntax of an agent program in Jason. 21

3.1. Predefined Weka based artifact types in JaCa-DDM. 34

4.1. Learning strategies summary 1. 68
4.2. Learning strategies summary 2. 69

5.1. 4-fold cross validation example. 71

6.1. Datasets used to explore generalization. 76
6.2. Experimental parameters. 77
6.3. General experiments results. 78

7.1. The properties of the adopted datasets. 87
7.2. Strategy configuration. 88
7.3. The six classes of the case study 2. 89
7.4. The properties of the case study dataset. 90
7.5. Results for the case study 1: known datasets. 90
7.6. Results for the case study 1: known datasets (continuation). 91
7.7. Results for case study 2. 92
7.8. Results for case study 2 (continuation). 93

8.1. Strong and weak points of learning strategies. 98

VI

1. Introduction

This work introduces JaCa-DDM, an open framework to implement, deploy, and test
Distributed Data Mining (DDM) strategies based on the agents & artifacts paradigm, as
provided by Jason [13] and CArtAgO [74] technologies. In this chapter, the foundation
of this work is presented, starting with a problem statement that highlights the main
concepts and contributions of JaCa-DDM. Next, the hypothesis where this work revolves
is addressed. On the following section, a justification for JaCa-DDM is presented, briefly
comparing it with other solutions, and remarking its novel approach as an open frame-
work for DDM. Then, the objectives of this work are promptly addressed. A background
related to Distributed Data Mining, agent-based DDM, and BDI Agency, is introduced
in order to set down the general concept where JaCa-DDM is based. Following the back-
ground, the state of the art where the concept of agent mining is introduced, highlighting
main areas of research and challenges; and also, agent-based DDM related work is pre-
sented, addressing two commonly used approaches: centralizing, and meta-learning, as
well as comparing the agent-based DDM state of the art with our approach. Also, the
scope and limitations of this work are presented to give insights for future work. Fi-
nally, this part closes with the organization and brief introduction of each part of this
document.

1.1. Problem statement

The discovery of knowledge in data bases, more commonly known as Data Mining, is
a discipline that merges a myriad of diverse techniques to explore, analyze, and exploit
large amounts of data, with the aim to discover patterns and significant rules that in some
way lurk in the data [10]. The origin and distribution of the data that will participate in
a Data Mining process is important to determine the best way to exploit it in an effective
and efficient fashion. The traditional way dictates that all data must to be centralized
in a single place, however, with the current ubiquity of computer networks and related
services, the data pertaining to the same domain or system may be scattered among
various places, which creates various challenges for Distributed Data Mining (DDM):

• Which is the best way to obtain a good learning models that takes into account
the data from all places?

• Which is the best way to deal with heterogeneous data?

• Since in some applications the amount of data is significant, How can the commu-
nication of the data and Data Mining operations be optimized?

1

• How to deal with data privacy in sensible applications?

• How to deal with data that constantly grows and change in an efficient fashion?

All of the mentioned challenges are intrinsic to a key question: What is a good strat-
egy to cope with a DDM scenario in an efficient and reliable way, in order to obtain the
desired global result, by also taking into account some given constraints? By strategy,
we mean a workflow that describes interactions between computational entities, agents,
their tools and services, that may coordinate or collaborate in order to learn a model.
Multi-agent systems are a natural way to deal wit distributed scenarios, since they are
essentially distributed systems in their core, having all the technological foundations to
allow flexible, robust, and scalable systems [56], so its adoption as a deployment technol-
ogy for DDM seems intuitive, and hence its adoption. Designing a general strategy, such
as mentioned before, seems to be a truly open question, without a unique answer. It is
more reasonable to assume that certain strategies are better suited for some scenarios
than others, given the DDM concerns. The goal of this work is to conceive a model and
a tool, automatically enabling the deployment and evaluation of different DDM open
strategies, allowing the developer to focus only on the definition of such strategies.

So, this work introduces JaCa-DDM1, a novel agent-based Distributed Data Mining
system founded on the Agents and Artifacts paradigm [63], and conceived to design, im-
plement, deploy, and evaluate learning strategies that cope with DDM scenarios. Agents
are modeled and implemented in Jason, a BDI agent oriented programming language that
provides the right level of abstraction to describe DDM strategies in terms of events, be-
liefs, desires, intentions, plans, and speech acts; while artifacts, defined and implemented
following the CArtAgO [75] model, resolve gracefully what Shoham [82] called “agentifi-
cation”, e.g., the transformation of an arbitrary device to be exploited in agent oriented
programming terms. Artifacts encapsulate Weka 3 [91] objects, so that the agents in
the system can create, perceive, compose, and use them. This allows the reusability of
existing Data Mining tools in the strategies; while solving the interaction between agents
and tools.

Also, a set of strategies for DDM are presented and evaluated, from centralizing to
Meta-learning [69] approaches, highlighting a kind of new proposed strategies based on
Windowing [70], a technique consisting on building an initial model with some examples,
and then enhancing it by reviewing available counter examples. We study the suitability
of such strategies in a distributed environment, based on the observation that Windowing
reduces the number of training examples used for learning, potentially reducing data
communication. We also enhance the Windowing approach through GPU computing.

The main contributions of the work are as follows:

• From the Multiagent Systems perspective, our approach illustrates how to exploit
the so called “agentification” of Weka components for the sake of code reusabil-
ity, while preserving the benefits of Belief-Desire-Intention (BDI) reasoning and
representation provided by Jason.

1JaCa-DDM is available at http://jacaddm.sourceforge.net/

2

• From the DDM perspective, the resulting system, JaCa-DDM, an extensible tool
to define and test distributed data mining agent-based strategies.

• An analysis of a set of strategies that explores centralizing, meta-learning, Windowing-
based , and GPU enhanced approaches applied to distributed settings.

1.2. Hypothesis

The agent and artifacts paradigm enables the definition of a flexible framework for DDM,
where it is possible to implement DDM solutions based on traditional approaches, as well
as new ones, and whose performance, measured in terms of accuracy, time of convergence,
and traffic load, can be compared fairly, even against centralized DM approaches.

1.3. Justification

JaCa-DDM, the proposed framework, provides:

• An open model for describing DDM processes in terms of agents exploiting artifacts
that encapsulate DM tools, i.e., an agents & artifacts approach for DDM.

• A Multi-platform system for deploying and evaluating such models in a distributed
environment.

• The API facilities and tools to develop new DDM workflows and artifacts based
on our model.

From the best of our knowledge, agent-based DDM systems have focused on providing
a kind of semi-autonomous DDM execution process, where agents try to come up with
the best course of action given a predefined set of agent types and workflow, also focusing
on the GUI facilities for the end user. Thus, they are end user focused systems, providing
a small amount of flexibility and opportunities to change the behavior of agents and their
interactions, making difficult to adapt the systems to particular concerns.

On the other hand, we propose an open approach for describing encapsulated DDM
process through the description of agent behavior and their interactions with their tools,
called learning strategy. To make this description as sophisticated as possible, we adopt
the BDI model, which allows high level behavior and interactions between agents. We
believe that this openness can bring new ideas about how to integrate agents and DDM
in a vast array of scenarios with different concerns. We in fact have experienced this
first hand with our proposed Windowing-based strategies discussed in this work.

It is not only desirable to have openness to try new agent-based approaches for DDM,
but also a way to measure how good these approaches are in a distributed scenario. The
intention of JaCa-DDM is exactly that: to have a model and framework to describe
open agent-based encapsulated workflows for DDM (learning strategies), and also have

3

a tool that takes into account distributed scenarios to test and deploy such workflows,
providing an entire framework for experimentation.

With the previous description, it may be thought-out that JaCa-DDM is a developer
focused system, but in fact, as learning strategies are encapsulated, end users can also
benefit from previously created learning strategies, closing the gap between developers
and end users, and making possible to share learning strategies.

We believe that our approach is of great value for future research on agent-based
DDM, and we encourage its adoption.

1.4. Objectives

The objectives of this work are as follows:

• Create a model for describing open and flexible workflows for DDM based on the
agents & artifacts paradigm, i.e.; learning strategies.

• Implement an extensible system, i.e.; JaCa-DDM, for the deployment and testing
of learning strategies, also providing an API to implement learning strategies.

• Develop and test a series of learning strategies to explore traditional agent-based
DDM approaches, e.g.; centralizing, and meta-learning.

• Propose and test a new approach for agent-based DDM in the form of Windowing-
based learning strategies.

• Enhance through GPU computing the Windowing process to deal with large and
distributed datasets.

• Test the enhanced Windowing process with large datasets, also considering a case
study for pixel-based segmentation of images.

The objectives have the purpose to validate our proposed hypothesis through showing
how JaCa-DDM can be of great value to propose and test new approaches for agent-based
DDM, taking as a proof of concept our proposed Windowing approach.

1.5. Background

In order to assess our proposed framework, some background concepts are necessary.
First, Distributed Data Mining is presented, highlighting its differences with traditional
Data Mining, and focusing on concerns and challenges. Of particular interest is the
introduction of Meta-learning as a way to deal with distributed settings. Next, agent-
based DDM is introduced, creating a link between DDM and agent technology, drawing
the way that JaCa-DDM follows as an agent-based DDM system. Finally, BDI Agency
is presented, giving the fundamental concept of BDI Agent and its characteristics, also
presenting historical insights of how BDI theories were created and what the BDI model

4

for agents is about. BDI Agency is one of the core models in which JaCa-DDM is
founded.

1.5.1. Distributed Data Mining

Traditionally, Data Mining algorithms assume centralization of the training data. That
is, data is gathered at a single place. However, with the explosion of Internet and network
based technologies, the scattering of data has become common, and so the necessity to
come up with new Data Mining solutions to deal with such scenarios.

In these distributed environments, Data Mining faces two major challenges [97]: i)
Data is generated so quickly, that it is not possible to process it in a time efficient
manner; ii) Data is stored in several places, so the cost for centralizing them at a single
place is proportional to their amount. Bandwidth limitations, and data privacy are other
factors that impact data centralization.

To deal with the mentioned problems, DDM has aroused as new area to tackle Data
Mining problems in distributed environments. The area has gained popularity, as the
business intelligence market has grown [97].

DDM takes into account scenarios where the data is distributed or even the computa-
tion is distributed. DDM is used with various servers working in parallel, peer-to-peer
networks (P2P), sensor networks, etc. Under certain circumstances, the DDM process
may have privacy, communication, and/or computational resources restrictions. DDM
techniques may be categorized as follows [97]:

• Central clusters VS peer-to-peer: the central cluster has a coordinator. The coor-
dinator splits the work among several computers. This scheme is easy to use an
configure, however, it is difficult to determine the optimal way to distribute work,
and it suffers the single point of failure problem, if the central cluster fails the
whole process also fails. For this scheme to work, it requires a stable environment,
which may be more commonly found in local environments with several servers.
On the other hand, P2P networks do not need a central coordinator, each node
may bee seen as client and server. Each node in the network receives a fraction of
work to deal with. Given that the P2P scheme is descentralized, each location has
a limited view of the system, which allows global security of the system.

• Single model VS Meta-learning: in the single model approach, the data is scattered
in various sites, local data may be sampled and transferred to a central site, where a
single model is produced; local models may also be created and taken into account
at a central location to obtain a final model. Meta-learning [69], defined as the
learning from learned knowledge, has as objective the creation of a global model
from widely spread and distributed data sources. In meta-learning a variable
number of independent models are computed in parallel, one for each location,
without the need of sharing information between sites. This method is flexible,
allowing to combine different types of Data Mining models.

5

• Homogeneous data VS heterogeneous data: these terms may be better explained
from the relational database concepts horizontal and vertical partitioning respec-
tively. In horizontal partitioning (homogeneous) each distributed site has the same
meta-data, that is, the table structure is the same, so partition happens at the
record level, records are different in each site but share the same structure. Vertical
partitioning (heterogeneous) on the other hand, segments each record information
in several sites (or even the information may be repeated), so the structure is also
distributed, the meta-data known in each site may be different. To deal with het-
erogeneous data in a DDM context is not only a matter of format unification, but
a problem of semantic unification as well, each location may have its own way to
describe the same problem, and to unify the different descriptions is a challenge.

Traditionally, DDM is approached in two ways: Centralizing data and exploiting meta-
learning. Centralizing is about transmitting the available training data to a central
place and from there apply traditional DM. Meta-learning is a technique that entails
the creation of high level classifiers known as meta-classifiers, which integrate multiple
classifiers computed separately over different training data [69]. Meta-learning deals
with the problem of coming up with a global classifier from big and distributed datasets.
Its objective is to compute in parallel a number of local independent classifiers from
distributed data sources, applying different learning algorithms. Each local classifier is
known as base classifier. Base classifiers are gathered and combined in a central location
using a meta-classifier induction method, which tries to exploit the predictive power of
each one. To create the meta-classifier, three techniques are generally used [69]:

• Voting: when a classification is required, each base classifier submits a vote (its
predicted class), the prediction with more votes wins. A variation may be used
that considers weighted votes.

• Arbitrating: an arbitrator classifier is learned from a separate and specially picked
set of training examples. Arbitrating consists on using the predictions of the base
classifiers, the arbitrator, and an arbitrating rule to obtain a consensus for the
prediction. The arbitrating rule may be as simple as in case of a tie, use the
arbitrator prediction.

• Combiners: generate meta-classifiers from meta-data (knowledge about how base
classifiers behave) created form the base classifiers. An example of this variation
is stacking [93].

The distributed nature of DDM, creates an additional challenge regarding its deploy-
ment technology, which may limit or empower the possibilities of the DDM process. In
this work, we embrace the use of multi-agent systems, and related technologies such
as CArtAgO artifacts, as a way to implement rich and flexible DDM processes (strate-
gies) and their deployment. In the next section, the fundamental concepts related to
agent-based DDM are introduced.

6

1.5.2. Agent-based DDM

Agent-based Data Mining, or simply Agent Mining [21], seeks to exploit the advantages
of MAS in the Data Mining domain [2]. As an interdisciplinary area, it brings new
opportunities and challenges: What is the interest of such efforts? What are the fun-
damental issues of a possible integration of agents and Data Mining tools? How are
agents and Data Mining tools going to interact? What kind of tools are going to be
used for this purpose? Of particular interest for us, is the case of Distributed Data Min-
ing (DDM), defined basically as the application of Data Mining processes to distributed
data sources [28]. Additional concerns present in DDM include [73]: communication and
computational costs, generalization of results to all the distributed data, privacy, and
heterogeneity.

Given its nature, it is easy to assume the interest in Agent Mining because of the
inherent MAS advantages, including: flexibility, robustness, and scalability [56]. After
all, MAS are by definition out of the box modular, scalable, decentralized and, last but
not least, autonomous systems. However, we do not reduce the relevance of Agent Mining
to this sense, but we argue that interaction and integration issues are central to such
interest. MAS are relevant to DDM, if they provide expressive models enabling a natural
and sophisticated way to describe workflows [57], in terms of high level interactions
among agents and their tools. Even better if these workflows integrate existing Data
Mining tools. All together, MAS can be ideal to deal with DDM scenarios [43].

JaCa-DDM uses an agency model known as BDI, which it is not traditionally em-
braced by agent-based DDM systems. The BDI approach can potentially be of great
value in DDM, providing a rich representation for agents, which they can also reason
about or talk about by means of speech acts [79]. We believe that the BDI model ex-
tends the possibilities for agent-based DDM systems, and as an open framework and
model, JaCa-DDM entails the adoption of rich, flexible, and powerful technologies that
enable a sophisticated approach for DDM. The fundamental concepts of BDI agency are
introduced next. Also, section 1.6.2 expands more on agent-based DDM and related
systems.

1.5.3. BDI agency

To better understand the terms agent and Multi-Agent System (MAS) it is better to
start considering how agents relate to other types of software. First, considering func-
tional programs. A functional program takes an input, process it, produces an output,
and finishes [77]. They are called functional for the similarity they share with math-
ematical functions. As an extension to functional programs, object-oriented programs
have aroused as a way to abstract problems on the form of objects, they represent in-
dividual and encapsulated elements that can communicate between each other through
messages. There exists a wide variety of well established techniques to develop func-
tional and object-oriented programs. Unfortunately, a variety of programs do not have
a simple input-process-output operational structure. In particular, a lot of real world
system need to have a reactive element, that is, they need to maintain a close interac-

7

tion with their environment for a long term; they do not simple compute a process and
then end. Reactive systems [55] can not be properly described from the functional and
relational point of view. Reactive systems need to be described in terms of a continuous
behavior. A special case of reactive system is concurrent system. A concurrent system
is divided in several modules, each one being a reactive subsystem that interacts with
the environment and other modules.

There is a kind of system even more complex than concurrent system, it is a kind of
reactive system known as agent [13]. An agent is a reactive system that exhibits some
degree of of autonomy, so certain tasks can be delegated to it, and the system by itself
can determine the best way to accomplish the task.

The name agent comes from the concept of active, agents produce actions having
a goal: agents are situated in an environment, so they can accomplish tasks in our
behalf, it is desired that agents actively seek goals, finding out for themselves the way
to accomplish them.

As agents are situated in an environment, they have to be able to perceive it (by means
of sensors), and to change it though their actions (by means of actuators). Agents have
to decide how their perception should be interpreted in order to act on the environment.

The agent’s environment may be physical, as in the case of robots roaming around the
physical world, or software-based, as with agents that inhabit an operating system or
computational network. In the majority of application, agents just have partial control
and perception of the environment. This is due the fact that other agents may be present
in the environment, or the environment being too complex to be perceived and changed
by an unique agent.

Besides being in an environment, a rational agent has the following properties [94]:

• Autonomy: it is a characteristic that may be measured in a continuous spectrum.
In one extreme there are conventional computational programs, like word proces-
sors, and spreed sheets, which exhibit little or null autonomy. Everything that
happens is a consequence of the interaction with the user. Such programs do not
take any initiative in any sense. In the other extreme of the autonomy spectrum
are human beings, which can decide what to do, in what things to believe, and
which goals they want to pursue. In systems based on autonomous agents, aspects
of the human autonomy are tried to be reproduced, however, it is not possible to
expect a total agent autonomy currently, since the challenge is still too difficult
for current technology development, a computer program in the middle of both
extremes is more realistic. In other words, it is desired to delegate certain goals
to agents, which then decide the best way to act in order to accomplish the given
goal. Furthermore, the agent’s ability to construct goals is directly related to the
delegated goals. More specifically, the way the agents will act to accomplish their
goals is directly related to the plans provided to the agents, that define the way in
which an agent can act to accomplish goals and sub-goals.

In its simplest form, autonomy means to be able to operate independently to
accomplish delegated goals. An autonomous agent makes independent decisions

8

about how to accomplish delegated goals, their decision and actions are under their
own control and not the control of other agents.

• Proactiveness: it means to be able to exhibit a behaviour directed to accomplish
goals. If a particular goal is delegated to an agent, then it is expected that the
agent tries to fulfill the goal. Proactivineness discards passive agents, which never
try to do something. As such, for example, objects, in the Java sense, are not
agents: objects are passive, they only receive requests to execute a methods, they
do something only when another object interacts with them. This also applies
to other kinds of computational entities such as Web services to name another
example.

• Reactiveness: to be reactive means to respond to changes in the environment. In
real life, a plan rarely works without problems. A plan is frequently frustrated,
accidentally or deliberately. When a human being notices that a plan is going
wrong, it tries to take alternative courses of action. Some of those actions are on
the reflex level, while others require to do some deliberation. To develop a system
that simply responds to environment stimuli with direct reflexes is not difficult. It
may be implemented as a table that maps a state of the system with an action. In
the same way, to implement a system that it is purely directed to accomplish goals
is not difficult either, it is what traditional computer programs do. Nevertheless,
to implement a system that accomplishes an effective balance between the reactive
and goal directed behavior is complicated.

• Social ability: every day, millions of computers around the world share information
in a routinely manner. In this sense, to build a computer system that shows some
degree of social ability is not complicated. However, the ability to exchange bytes
it is not social in the desired sense for a rational agent. It is desired to have the
ability to cooperate and coordinate activities with other agents, in such way that
they can accomplish goals. To be able to have this kind of social ability, it is
required to have agents that not only communicate in terms of bytes exchanges
or method invocations, but also in terms of knowledge. That is, agents with the
ability to communicate believes, goals, and plans to other agents.

On practice, it is common to find environment where various agents coexist. This is
the kind of environment of interest for multi-agent systems. Each agent on the systems
has a sphere of influence, this sphere determines the fraction of the environment that
the agent controls, or partially controls. It may be possible that the spheres of influence
overlap, this is the case when two or more agents have control over the same portion
of the environment. This situation complicates the agent’s work since to accomplish a
desired result in the environment, they have to also consider how the other agents will
act. Agents may organize through relationships between them, for example, an agent
may obey another agent. Agents can have knowledge about other agents, it is also
possible that an agent only knows some of the agents of the system.

9

The BDI architecture has its origins in the Rational Agency project by the research
institute of Stanford University in the middle of the 80’s. The model is an adaptation of
the theory of practical reasoning, developed by Michael Bratman [15], which particularly
focuses on the role that intentions play in practical reasoning. Bratman develops a
planning theory of intention. Intentions are treated as elements of partial plans of action.
These plans play basic roles in practical reasoning, roles that support the organization
of our activities over time and socially. Bratman explores the impact of this approach on
a wide range of issues, including the relation between intention and intentional action,
and the distinction between intended and expected effects of what one intends. The
conceptual framework of the BDI model is described in [16], also describing a specific
agent architecture called IRMA.

The distinction between beliefs, desires, and intentions is as follows:

• Beliefs are information that the agent knows about their environment. This infor-
mation can be imprecise and unreliable.

• Desires are possible states of the environment that the agents wants to accomplish.
However, a desire does not necessarily implies that the agent will try to act in order
to accomplish its desire: is just a potential influence over the agent actions. It is
normal in a rational agent to have desires incompatible between each other. Desires
are normally interpreted as options that the agent has.

• Intentions are states of the environment that the agent is currently pursuing
through their actions. Intentions may be delegated goals to the agent, or they
can be the result of options consideration: the agent may evaluate its options and
chose some of them, options selected in this way become intentions. The agent
starts with a delegated goal, then it considers possible options compatible with its
delegated goal.

In the BDI model, agents are capable to communicate using speech acts [79], which
it is a kind of higher level communication than the simple message passing of object-
oriented programs. It has a variety of performative verbs to communicate facts, delegate
work, ask for information, among others; which enable social communication.

1.6. State of the art

The interactions between agent technology and Data Mining have been widely ex-
plored [24, 22, 23, 21]. Research interests are bidirectional, including mutual prob-
lems, agents exploiting Data Mining, agents supporting Data Mining, adaptive learning
agents, and applications. This part concerts the state of the art, which covers Agent
Mining, highlighting the most important areas of research, and locating JaCa-DDM in
one of them. As JaCa-DDM is intended for Distributed Data Mining, an overview of
agent-based DDM is also addressed, presenting systems similar to JaCa-DDM.

10

1.6.1. Agent Mining

Agent-based DDM is included in a wider research area known as Agent Mining which
is an emerging interdisciplinary area that integrates multi-agent systems, Data Mining
and knowledge discovery, machine learning and other relevant fields [21]. The coupling
of agent technology and Data Mining is driven by challenges faced by both communities.

Agent Mining is in essence the technologies, methodologies, tools and systems that
synthesize multi-agent and Data Mining technologies for better addressing issues that
cannot be tackled by any single technique with the same quality and performance [24].
Agent Mining brings multi-fold advantages to multi-agent systems, and Data Mining,
as well as new theories, tools and applications that are beyond any individual technol-
ogy [23].

Main areas of research in agent Mining

The main areas of research in agent-mining have quickly evolved. The research falls in
the following categories [21]:

• Mutual problems: research problems in both areas that are equally relevant,
such as representation of constraints and design of constraint-based systems and
constraint-based Data Mining, the involvement of domain knowledge, knowledge
representation, ontology and semantics for system design and content learning,
organizational factors in conceptual modeling and system construction, social is-
sues such as security, privacy and trust of data and policies, the role of data, and
human-system interaction in interface design and modeling. One of these problems
involves the relationship between multi-agent systems and Distributed Data Min-
ing, which it is paramount in this work. An interesting example is [6] that proposes
a model for integrating Data Mining with Agent Based Modeling and Simulation
(ABMS) in order to improve both, so Data Mining techniques may be applied in
ABMS, and ABMS may be applied to generate data in limited data scenarios for
Data Mining.

• Agent-based Data Mining: agents and agent technology are used in Data Min-
ing for different purposes. This includes agent-based Data Mining systems, as
JaCa-DDM, agent-based data warehouse, agents for information retrieval, inter-
face agents for interactive Data Mining, mobile agents for distributed Data Mining,
agents for distributed learning and parallel learning, agent-based clustering, infor-
mation gathering agents, and automated Data Mining using agents for mediation.
Some recent examples of this kind of systems are i-Analyst [68], and EMADS [3],
both conceived for agent-based Distributed Data Mining, and further discussed
in the next section. Another recent example is [32] presenting an intelligent ar-
chitecture of Decision Support System (DSS) based on visual Data Mining; the
architecture applies the multi-agent technology to facilitate the design and devel-
opment of DSS in complex and dynamic environment.

11

• Data mining-driven agents: seeks to improve agents and multi-agent systems
through Data Mining. Research involves Data Mining for enhancing agent learning
and adaptation, Data Mining for user modeling, Data Mining-based personalized
agents, Data Mining for empowering recommendation agents, Data Mining-driven
trading agents and trading strategies, Data Mining-based agent assistants, Data
Mining for agent norm optimization, and Data Mining for agent behavior analysis.
An example can be found in [85], presenting a methodology and the corresponding
tool for transferring Data Mining extracted knowledge into newly created agents,
Data Mining is used to generate knowledge models, which can be dynamically
embedded into the agents.

• Agent learning: to integrate machine learning techniques in multi-agent systems,
and to create intelligent and adaptive agents. Research involves mainly reinforce-
ment learning for complex real world problem-solving. For example [30] presents a
multi-agent reinforcement learning (MALR) approach to solve the load-frequency
control (LFC) problem for a wide range of operating conditions in a multi-area
power system.

• Agent Mining applications: as many references show, the integration of agents
and data Mining, and the development of agent Mining are driven by broad and
increasing applications in many areas for a variety of purposes. Typical appli-
cations include simulation of artificial immune systems, artificial stock markets
with programmatic trading mechanisms, distributed data analysis, personalized
service and recommendation in e-commerce, web personalized assistants, network
intrusion detection systems, peer-to-peer services and systems, supply chain man-
agement, trading agents and systems, web and social networks, robots and games.
An example of the integration between agents and Data Mining can be found
in [88], where it is discussed how intelligent agents can be used to enhance Data
Mining processes related to e-commerce.

Challenges and opportunities in agent Mining

The main challenges of agent Mining revolve around three main questions [21]:

• How can agents and Data Mining interact and be integrated?

• What methodologies are necessary and suitable for interacting, integrating and
complementing agents and data Mining?

• What are the lifecycle, processes and work mechanisms for interacting, integrating
and complementing agents and data Mining?

The key research challenges and opportunities in agent Mining that address the previous
questions are the following:

• Theoretical foundation in agent Mining: involves the exploration and identifica-
tion of the main problems that enable the integration between agents and Data

12

Mining. Challenges concern suitable methodologies for agent Mining, modeling
human intelligence and roles in agent Mining systems and applications, modeling
social, environmental, and organizational factors in agent Mining policies, design,
rules and systems.

• Issues in agent-enhanced Data Mining: agents may be used in Data Mining to face
challenges such as isolation, distribution, mobility, dynamics, various and large
data sources, privacy and security of data. There are opportunities in emerging
areas such as cloud computing, and Internet of Things.

• Issues in Data Mining-empowered agents: agent intelligence and MAS in general
can be benefited from Data Mining, problem solving may be automated, adaptive,
dynamic, inductive; enabling agent-oriented rules, policies, and processes. This
can be achieved identified hidden information in a large scale of historical data
and behaviour of agent networks, taking also into account the current dynamics
and behaviors of the agents in the running system.

• Issues in agent learning: nowadays, this sub-area is dominated by work on rein-
forcement learning, specifically at the intersection between reinforcement learning
and game theory. Opportunities appear in swarm intelligence, transfer learning,
evolutionary learning, multi-view learning, multi-strategy learning, and parallel
inductive learning.

• Agent Mining tools and applications: Data Mining applications have been used
in applications such as fraud detection, risk management, and anomaly detection.
These applications have gained acceptance in industry sectors, agent Mining appli-
cations are in the processes of gaining acceptance, there is a need to create effective
tools, platforms and applications to support the exploration of the research issues
introduced in this section.

1.6.2. Related work

Data Mining merges a wide variety of techniques intended for the exploration and analy-
sis of huge amounts of data, with the goal of finding hidden patterns in it [91]. Data dis-
tribution is relevant for succeeding [67]. Traditionally, all data is available in a single site;
but currently, it is common to face situations where data is distributed. DDM responds
to the need of applying Data Mining processes over decentralized data sources [56]. From
the Data Mining point of view, some issues may arise in these distributed scenarios, e.g.,
taking into account data from all sites; dealing with heterogeneous data; optimizing data
communication; preserving privacy; exploiting distributed computational resources; and
scalability to cope with changing data sources, that possibly grow constantly.

MAS are well suited to deal with such issues [44], since they are autonomous, dis-
tributed, robust, social systems by definition. Agent based DDM comprehends the
methodologies, technologies, tools and systems that synthesize MAS technology, Data
Mining, Machine Learning and other relevant techniques, such as Statistics and Semantic

13

Web, for better addressing DDM issues that cannot be tackled by any single technique
with the same quality and performance [21].

Without surprise, a myriad of agent based DDM systems and frameworks [84, 53, 42,
5, 2, 37, 4, 58, 57, 98] have been proposed. Basically, all of them use one of the following
two approaches to cope with DDM issues [73]:

• Centralizing: all distributed data is moved to a single site and merged together,
obtaining in this way a traditional centralized Data Mining setting.

• Meta-learning: combines the results of a number of separate learning processes in
an intelligent fashion [25]. Voting, arbitrating, and combining techniques can be
used [69] for this purpose.

Meta-learning can be efficient and scalable, since data transmission is lower than in
centralizing approaches, and it is inherently parallelized. Nevertheless, meta-learning is
not as efficient as its centralizing counterparts for classifying, since the process involves
various models. A major issue of meta-learning is obtaining models that represent a good
generalization of all the data, considering that they have been built from incomplete local
data [80]. The proposed solutions aggregate local results to estimate a global model,
rather than producing a global one [4]. They include knowledge probing [38], mixture
of expertise [96], Bayesian model averaging [71], and stacked generalization [93], among
others.

JAM [84], BODHI [42], and Papyrus [5] are well known agent based DDM systems,
reviewed in different surveys [43]. However, comparing JaCa-DDM with them is not fair,
since they were developed before agent oriented programming facilities emerged. The
following systems are closer in time and interests to our approach: i-Analyst [58, 57]
is implemented using WADE [20], an extension of the agent middleware JADE [8] that
integrates the notion of workflow. DDM processes defined as workflows are easy to
configure, visualize, an execute. An API is provided with the same aim that our artifacts,
to adopt new data mining algorithms. Three types of agents are provided, one for the user
interface; one for checking and preparing resources; and one for learning. The workflow
of the latter agent defines a Data Mining process. In our opinion, it is not clear what
is the extent and limitation of the workflow definition language, particularly regarding
communication and coordination. In some way, the system resembles the knowledge flow
tool present in Weka [91], where it is possible to set sequential data mining workflows
through graphical components. Workflows evoke JaCa-DDM strategies, however our
definition language exploits the Agents and Artifacts paradigm, enabling sophisticated
descriptions in a more natural way.

Another example is EMADS [2], an Agent Enriched Data Mining open framework,
also implemented in JADE. The agents, contributed by a community, run in an Internet
space, negotiating with each other while performing a variety of Data Mining tasks based
on classification models and associative rules. Some of these agents encapsulate Data
Mining algorithms; while JaCa-DDM encapsulates algorithms exclusively as artifacts,
making a cleaner distinction between the agents controlling the DDM workflows and
their tools. The goal of EMADS is to find the “best model” given different algorithms

14

and data distributions. Although configurable, the actions available for the agents and
the workflow are predefined. JaCa-DDM is much more extensible in this sense, since
the set of algorithms and actions available to the agents can be extended by defining
new artifacts, and the workflows can be freely defined in terms of Jason agent programs.
SMAJL [95] learns associative rules exploiting data sampling to reduce communication.
Some of the JaCa-DDM strategies presented in this paper, use a sampling technique
known as windowing [70], with the same purpose.

All these systems adopt a weak notion of agency, instead of the complete Belief-Desire-
Intention (BDI) approach adopted in JaCa-DDM. We believe that mature BDI theories
and tools, as those displayed in Jason, are better suited for supporting DDM, given their
well founded semantics for reasoning, communication, and organization, providing more
possibilities to implement rich and sophisticated approaches for DDM. A preliminary
concurrent, but not distributed, version of our system [50] was used to corroborate this
intuition. The complete, general purpose, extensible, distributed version of JaCa-DDM
that we present in this paper, is founded on the Agents & Artifacts paradigm described
next.

1.7. Scope and limitations

Currently, the work has the following limitations:

• Only the induction of classification models are considering, extensions to support
clustering and online-learning are envisaged.

• In JaCa-DDM, only Weka arff files are supported as data sources. Support for
other formats, and even relational data base engines are planed as future work.

• Experiments where carried over stratified partitions of the original datasets, dis-
tributed in the available JaCa-DDM nodes. Testing the considered strategies when
this is not the case would be of interest to evaluate their performance when facing
locally overrepresented classes.

• Security and fault tolerance aspects of the JaCa-DDM platform are still on devel-
opment.

• The current JaCa model raises some limitations on the form of distributed trans-
parency, which impacts in the development of learning strategies. There exists an
ongoing effort to improve distributed aspects of the JaCa model, which is discussed
in our future work.

1.8. Document organization

In order to properly introduce JaCa-DDM, the rest of this work is organized as follows.
Part I introduces the related methods of this work, beginning with the JaCa model,

providing formal definitions for Jason and CArtAgO, and their related concepts such

15

as agent program, message, artifact type, and workspace. From there, JaCa-DDM is
presented in detail. An abstract model of the system is presented, based on the concepts
of JaCa-DDM strategy and deployment. Then the workflow to deploy a strategy in a
network of distributed computer nodes is described. This includes the definitions of
basic agents and artifacts available, as well as configuration issues. Next, a set of learn-
ing strategies are addressed, which demonstrates the flexibility and convenience of the
system. Their primary aim is to encourage the use of our tool for developing and testing
new strategies, suited to different DDM concerns. A first group of strategies exploit
centralized approaches with strictly benchmark purposes. The second group of strate-
gies addresses centralizing approaches. A third group explores meta-learning. Finally,
a fourth group of strategies, exploits Windowing [70], a technique based on building an
initial model with some examples, and then enhancing it by reviewing available counter
examples, in this group we also introduce GPU-enhanced strategies. We study the suit-
ability of such strategies in a distributed environment, based on the observation that
Windowing reduces the number of training examples used for learning, potentially re-
ducing data communication. At the end of this part, a presentation of the methods
used for experimentation and result analysis are addressed, including cross validation,
Wilcoxon signed-rank test, and Forest plots.

In part II the learning strategies presented previously are evaluated, and their yielded
results are analyzed and discussed. Two sets of experiments were conducted:

• General experiments: to show, as a proof of concept, how the JaCa-DDM model
can be used to implement and test a wide variety of learning strategies.

• GPU and large datasets: JaCa-DDM is tested for large and distributed datasets,
in particular, using the Window-based GPU strategies described in section 4.4.4.

Finally, part III closes this work with some conclusions, and highlights future work.
Also, at the end, a future work related to extending the JaCa model is presented in
detail, along with the introduction of a new Web-based GUI for JaCa-DDM.

16

Part I.

Method

17

In this part, a throughout presentation of the most relevant methods that form part
of JaCa-DDM and related experiments are addressed. This includes the JaCa model
which is the paradigm in which JaCa-DDM is implemented, based on agents & artifacts,
and concerning two technologies: Jason, a well known Agent Oriented Paradigm (AOP)
language; and CArtAgO, a technology to define agent environments in terms of arti-
facts that provide services. As the technological foundation was provided, JaCa-DDM
is presented in extend, covering its model for learning strategies and deployment, its
architecture, and workflow. Next, given the learning strategy model presented previ-
ously, several learning strategies based in different concerns and ideas are defined, this
includes learning strategies based on approaches such as traditional centralized, cen-
tralizing, Meta-learning, and Windowing-based. Finally, related methods used in our
experiments and result analysis are addressed.

18

2. JaCa model

JaCa is the result of the composition of two technologies for MAS: Jason [13], and
CArtAgO [74]. Jason initially stood for for ”Java-based Agentspeak interpreter used
with Saci for multi-agent distribution Over the Net”. Since it is not based only on
SACI anymore, as other infrastructures area available, it was decided the to use Jason
as a proper name for the interpreter, also taken inspiration from Greek mythology.
CArtAgO, on the other hand, stands for Common ARTifact infrastructure for AGents
Open environments.

Jason provides the means for programming MAS. It is an agent oriented program-
ming language that entails the BDI approach, it is based on the abstract language
AgentSpeak(L) [72]. Apart from its solid BDI theoretical foundations, the language
offers several facilities for programming Java powered, communicative MAS. Communi-
cation in Jason is based on Speech Acts, using a subset of KQML [33].

CArtAgO provides the means to program the environment, following an endogenous
approach where the environment is part of the programmable system.

Figure 2.1, shows how Jason and CArtAgO integrate in a layered fashion, providing
the means to characterize the environment in CArtAgO artifact terms, and feeding that
representation to Jason agents that can also act upon the environment through artifact.

2.1. Jason

Apart from its solid BDI theoretical foundations, the language offers several facilities for
programming Java based, communicative MAS, such facilities include:

• Speech acts based communication with annotations to specify the information
origin.

• Annotations in plans labels which may be used for customization.

• Customizable functions for selection, trust, and customized agent architectures.

• Direct extensibility through internal actions defined by the programmer.

• Support for programming Java-based agent environments.

• An IDE and a plug-in for the Eclipse IDE to develop Jason MAS in an integrated
environment that supports Java and AgentSpeak(L) editors, and proper debugging
facilities (Mind Inspector tool) to inspect agent’s internal state.

19

Environment

Network’s node

art2

Artifact

art1

art3

Workspace

art4 art5

art6 art7

Abstraction of the
environment

Agent

Agents

ag1

ag2

ag3Ja
so

n
C

Ar
tA

gO

Action/Perception

Speech acts

Linkage

Figure 2.1.: The JaCa model.

The notion of agent is fundamental, and is the most relevant part taken from Jason
in the JaCa model. An agent is defined as follows.

Definition 2.1.1 An agent program in Jason (ag) is a set of beliefs (bs) and a set of
plans (ps), as defined in Table 2.1.

2.1.1. Architecture

There is an important distinction between agent program an agent architecture. The
agent architecture is the agent framework where an agent program runs. The developer
writes the program that directs the agent’s behavior, but much of what the agent actually
does is determined by the architecture, without the direct involvement of the developer.
For example, the belief base of any agent is updated automatically.

A practical BDI agent is a reactive planification system [13]. This kind of system is
designed to be constantly active, reacting to events. Actions may change the agent’s
environment, so agents goals are fulfilled. An agent is constantly perceiving its environ-
ment, reasoning about how to fulfill its goals, and acting to change the environment.
The agent’s practical reasoning is executed in accordance to its plan library developed
by programmers.

To define agent behaviour, Jason has three main constructors:

20

ag ::= bs ps
bs ::= b1 . . . bn (n ≥ 0)
ps ::= p1 . . . pn (n ≥ 1)
p ::= te : ct← h
te ::= +at | − at | + g | − g
ct ::= ct1 | >
ct1 ::= at | ¬at | ct1 ∧ ct1
h ::= h1;> | >
h1 ::= a | g | u | h1;h1
at ::= P (t1, . . . , tn) (n ≥ 0)

| P (t1, . . . , tn)[s1, . . . , sm] (n ≥ 0,m > 0)
s ::= percept | self | id
a ::= A(t1, . . . , tn) (n ≥ 0)
g ::= !at | ?at
u ::= +b | − at

Table 2.1.: The BNF syntax of an agent program in Jason. Adapted from [13].

• Beliefs: they are the informational constituent of an agent. Each belief (bi ∈ bs)
is a first-order grounded atomic formulae. Atomic formulae (at), beliefs included,
can be annotated. An annotation is a complex term that provides details about
beliefs. By default, source annotations are considered: an agent can believe some-
thing because of perception (percept), self conclusion (self), or communication
(i.e., being told by another agent id). So, beliefs change at runtime keeping the
information owned by the agent updated. A literal is any predicate or its nega-
tion. An agent has a belief base which consists of several literals that represent
information. Any symbol (sequence of characters) that begins with a lower case
is an atom which represent objects or particular individuals. A symbol beginning
with an upper case is known as variable, which are initially unbound, but they
can be bounded through an operation known as unification. A term is any atom,
variable, or structure. A structure may be a list, or a predicate with a functor
and arguments. As in logic programming languages such as Prolog, beliefs can
also be rules. Rules allow to conclude new information from previous knowledge,
using a kind of modus-ponens logic derivation. A particularity of Jason is that
rules can also use information from annotations. Figure 2.2 shows the types of
terms hierarchy in AgentSpeak (L) that may apper in a Jason literal. For a more
in depth treatment of first order logic see [14], [26], [51].

• Goals: this is a fundamental concept in agent oriented programming. While beliefs
express properties believed to be true in the agent’s environment, goals express
properties of the state of the environment that the agent desires to be true. When a
goal g is represented in an agent program, this means that the agent is compromised
to act in such way that it will be able to change the state of the world in order to
make g true in the perceived environment.

In AgentSpeak (L) there exist two kinds of goals: achievement goals, and test

21

Figure 2.2.: Types of AgentSpeak (L) terms in Jason. Adapted from [13].

goals. Achievement goals use the ! operator, they instruct the agent to act upon a
desired state of the environment, through the execution of the related plan which
contains a series of actions. Test goals use the ? operator, and are normally used to
retrieve information from the belief base, but in certain circumstances, test goals
may also trigger the execution of plans.

There exists a fundamental distinction between the notion of goal in Prolog and
AgentSpeak (L). A goal in Prolog is a conjunction of literals that the interpreter
verifies if they can be concluded from the belief base, which essentially means that
Prolog is testing if the goal is a logical consequence of the logic program.

• Plans: they are the know-how constituent of an agent. Each plan (pi ∈ ps) has a
head (te : ctx) and a body (h). The body is a sequence of steps to be performed
by the agent, including: actions (a), subgoals (g), and belief updates (u). Updates
can be additions or deletions of beliefs. Subgoals can in turn be of two types: Test
goals (?at) that compute if an atomic formula is a logic consequence of the beliefs
of the agent, i.e., bs |= at; and, Achieve goals (!at) that ultimately compute a new
plan to form an intention for solving at. User defined actions can be implemented
in Java, as instances of Jason predefined classes for this purpose; or as operations
in artifacts, as stated in Definition 2.2.1. An empty body is denoted by >.

The head of a plan defines when it is relevant and applicable. A plan is relevant
for a given event e, if its trigger event is a logical consequence of the event, i.e.,
e |= te. Trigger events include adding or deleting a goal or a belief. A relevant plan
is applicable if its context is a logical consequence of the beliefs of the agent, i.e.,
bs |= ctx. That is, the context is used to verify the current situation to determine
if a particular plan, among various alternatives, has any chance to be successful
for the event, given the last known information about the environment. The true

22

context, denoted by >, means the plan is always applicable. A relevant applicable
plan is a candidate to form an intention.

Plans can also be labeled. The label identifies the plan, and can also be annotated
to use special directives for the interpreter, such as the atomic excitation of a plan,
or also to allow the programmer to make special annotations to use in further
custom processing. Labels of a plan must appear before the trigger event and they
have to start with @.

2.1.2. Reasoning cycle in Jason

An agent operates through a reasoning cycle which, in the case of Jason, can be divided
in ten main steps. Figure 2.3 shows the agent’s architecture of a Jason agent and the
functions that are executed during the reasoning cycle. In the figure, rectangles represent
the main architectural components that determine the state of the agent, i.e.; the belief
base, a set of events, a plan library, and the set of intentions. Rounded elements,
and diamonds represent functions that can be modified by programmers, while circles
represent essential parts of the interpreter that can not be modified. To be more precise,
diamonds represent selection functions which take a list of elements and return one of
them.

In what follows, each of the ten steps of the agent reasoning cycle is explained [13].

1. Perceive the environment: the fist thing than an agent does in its reasoning cycle is
sensing the environment to update its beliefs about the state of the Environment.
The agent architecture has a component to sense the environment following a
symbolic representation such as a list of literals. Each literal is a perception, which
is a symbolic representation of an environment property. The perceive method is
used to implement the process that obtains the perceptions.

2. Update the belief base: once the list of perceptions has been obtained, the belief
base needs to be updated to reflect the perceived changes in the environment. This
is done through a belief base update function, the method that implement this
function is called buf , the method can be customized. By default, the buf method
assumes that everything that was perceived in the environment will be included in
the list of perceptions obtained in the previous step, and in consequence the belief
base will be updated adding new perceptions, updating the ones that changed, and
deleting the ones that are not present in the list. Each change in the belief base
generates an event.

3. Receive communications from other agents: the interpreter verifies messages that
could be stored in the agent’s mailbox. This operation is done by the checMail
method, which can be customized. The method simply takes the stored messages
and returns them.

In a single reasoning cycle, just one message is processed by the interpreter. It may
be the case that in certain scenarios the messages need to have different priorities,

23

S I

E
ve

nt
s

E
xt

er
na

l
E

ve
nt

S
el

ec
te

d

S E

B
el

ie
fs

 to
A

dd
 a

nd
D

el
et

e

R
el

ev
an

t
P

la
ns

N
ew

 P
la

n
P

us
h

In
te

nt
io

n
U

pd
at

ed

OS

A
pp

li
ca

bl
e

P
la

ns

M
ea

ns

In
te

nd
ed

E
ve

nt
s

E
xt

er
na

l

P
la

n
L

ib
ra

ry

E
ve

n
ts

In
te

rn
al

E
ve

nt
s

3 ch
ec
kM
ai
l

In
te

n
ti

on
s

E
xe
cu
te

In
te
nt
io
n

...
N

ew
N

ew9

B
el

ie
f

B
as

e

N
ew

In
te

nt
io

n

P
er
ce
pt
s

ac
t

S
el

ec
te

d
In

te
nt

io
n

In
te

nt
io

ns

A
ct
io
n

P
er
ce
pt
s

1
2

B
U
F

10

E
ve

nt
s

C
on
te
xt

C
he
ck

E
ve
nt

U
ni
fy

B
R
F

B
el

ie
fs

A
ge

n
t

se
nd
M
sg

B
el

ie
fs

8

M
es
sa
ge
s

P
la

ns

pe
rc
ei
ve

7

5

6

A
ct
io
n
s

B
el

ie
fs

S
u

sp
en

d
ed

 I
n

te
n

ti
on

s
(A

ct
io

ns
 a

nd
 M

sg
s) ...

.
s
e
n
d

So
cA
cc

4

M
es
sa
ge
s

M
es
sa
ge
s

S M

Figure 2.3.: Agent reasoning cycle in Jason. Adapted from [13].

24

so a selection function is needed. The selection function can be customized by the
programmer, by default, the functions returns the messages in arrival order.

4. Select socially acceptable messages: before messages can be fully processed, they
are processed to verify if they can be accepted by the agent. The interpreter’s
method that does this work is known as SocAcc, for socially acceptable. This
method is usually customized by the programmer, taking into account the different
kinds of agents, so an agent can only accept information or work from trusted
agents. The default implementation simply accepts all the messages.

5. Select an event: BDI practical agents operate through continuous event manage-
ment, which represent perceived changes in the environment or changes in the
agent’s goals. In each reasoning cycle, just one event is processed. There may be
various pendant events, this may be because the environment had change recently
but the agent has not executed enough reasoning cycles to process them. For the
previous reason, it is necessary to select the event that will be processed in a partic-
ular reasoning cycle. This is done through an agent specific selection function that
can be customized. When customized, the programmer usually wants to consider
first events important for the context of the application. The default behaviour is
to process the events in the arrival order, having a queue behavior, which is only
recommended if there is not any special distinction between events.

6. Return relevant plans: once an event has been selected, it is necessary to find a
plan that allows the agent to act in such way that it can process the event. First,
relevant plans for the event are retrieved from the plan library. A plan is relevant
if it has an event trigger that unifies with the selected event.

7. Determine applicable plans: plans have a context to determine if the plan can be
used in a particular moment, given the information that the agent has. Even if
relevant plans have been selected, it may not be possible to apply any of them
for the current event. It is necessary to select, from the relevant plans, the ones
that are applicable; that is, the plans that given the current beliefs of the agent,
have more chances to be successful. So, it is necessary to verify if context of each
relevant plan is true; that is, if the context is a logical consequence of the agent’s
belief base.

8. Select an applicable plan: all the applicable plans selected in the previous step are
alternatives to manage the selected event. From the agent’s point of view, any of
those plans is equally good. The agent needs to choose one of the applicable plans
and commit itself to execute it. To execute a plan means that the agent has the
intention to follow the plan which in turns means that the selected plans will be
included in the intentions of the agent. The selection of option function SO selects
an applicable plan from the set of applicable plans.

The goals that are currently in the set of events represent the different desires that
the agent has available, and when one is chosen a commitment is created. On the

25

other hand, the different applicable plans for a given goal represent alternative
curses of actions to fulfill the goal. The SO functions, as other selection function,
is customizable. The default behavior is to choose the first applicable plan from
the plan library, the order is determined by the order in which appear in the plan’s
code, this can be useful for recursive plans.

9. Select an intention to continue its execution: typically, an agent has more than
one indentation in its intention set, each one represents a different action focus.
Intentions are competing for the agent’s attention. However, in a reasoning cycle,
at most one intention formulae from one intention can be executed. As such, before
an agent can act, it is necessary to choose an intention from the agent’s intention
set. The selection intention function SI is in charge of such task, also the function
is customizable. The default behavior of the function follows a round-robin schema.

10. Execute an intention step: once an intention was selected in the previous step,
the intention starts or resumes its execution from the next formulae, which is in
turn executed. The formulae may be an action that modifies the environment, an
achievement goal, a test goal, a mental note, or an internal action.

Jason allows the programmer to modify the reasoning cycle through the definition of
a custom agent architecture.

2.1.3. Agent communication in Jason

Communication in Jason is based on Speech Acts [79], using a subset of KQML, and
extending its operation semantics [59]. The predefined action .send is used to exchange
messages. When receiving a message, an agent puts it in a mailbox. Although messages
are exchanged asynchronously, only one is selected from the mailbox, at the beginning
of each reasoning cycle of the agent. Interactive messages, as asking something, have
a colateral effect: the associated intention is temporarily suspended until the answer is
received, or some defined lapse runs over.

Definition 2.1.2 A message is a tuple 〈id, ilf, cnt〉 where:

• The agent identification id denotes the sender or receiver agent, depending if it is
an input or output message.

• The performative ilf (illocutionary force) expresses the intention associated to
the message. Performatives include: Tell, Untell, Achieve, Unachieve, TellHow,
UntellHow, AskOne, AskAll, and AskHow.

• The content cnt of the message can be an atomic formula (at) or a set of them;
a belief (bi) or a set of them; and a plan (pi) or a set of them, depending on the
performative of the message.

A more detailed discussion of agent communication in Jason, along with its related
operational semantics, can be found in [59].

26

2.2. CArtAgO and endogenous environments

Traditionally, agents are conceived as entities situated in an environment, which they
can perceive and modify through actions, also reacting to changes in it accordingly [77].
Not only that, but the agents’ goal is to achieve an environment desired state. This
conception of environment, as the locus of agent perception, action, reaction, interaction,
and goals, stays true in current MAS development.

Two general perspectives are adopted when defined the concept of environment in
MAS: exogenous, and endogenous [76]. The exogenous perspective is rooted in Artificial
Intelligence, conceiving the environment as the external world, separated to the actual
MAS, which can be only perceived and acted upon by agents. An example of this
conception can be found in EIS [7]. In contrast, the endogenous perspective, grown in the
context of Agent-Oriented Software Engineering (AOSE) [62], conceives the environment
as a first class abstraction for MAS engineering [89], that not only can be perceived and
acted upon, but it can also provide services and tools for the agents to aid them in their
tasks, and as such, it is designed and implemented as part of the whole system. An
example of this conception is found in CArtAgO [74, 75].

CArtAgO is a computational framework for the development of environments based on
the paradigm of Agents and Artifacts [63]. The environment is conceived as a dynamic
set of entities known as artifacts, representing resources and tools that can be used,
perceived, and shared by the agents. From the design point of view, the artifacts are a
first class abstraction, that provides computational services and resources to the agents.
Agents, are yet still, the main abstraction for autonomous aspects of the system, in
particular those related with goals and social interaction.

Thus, Jason agents in JaCa-DDM use artifacts to perceive and act on their environ-
ment. Figure 2.4 denotes graphically the core elements of an artifact. Since artifacts are
better understood considering their interaction with agents, the Agents and Artifacts
meta-model is shown in Figure 2.5, in order to make the following definitions clearer.
The definitions presented here are based on [76]. First, the concept of artifact type is
defined:

Definition 2.2.1 A tuple 〈OProps,Ops,OEvs,manual, ws〉 denotes an artifact type,
where:

• The set of observable properties OProps = {(var, val), (var′, val′), . . . } defines the
artifact state variables (var), whose values (val) can be perceived by the agents as
beliefs var(val);

• The set of operations Ops = {o(t1, . . . , tn), o′(t1, . . . , tm) . . . } defines the compu-
tational processes executed in the artifacts. Some operations can be triggered by
agents as actions, providing what is called the usage interface of the artifact; others
are triggered by other artifacts, providing an analogous link interface;

• The set of observable events OEvs = {(o, s), (o′, s′), . . . } represent observable in-
ternal events produced by operations (o), externalized as signals (s) that agents can
perceive at the moment they occur, in a non-persistent way.

27

Operations

Linking
interface

Interface

Observable
properties

Signals

Figure 2.4.: Graphical representation of an artifact.

• Optionally, every artifact can include a manual in a machine readable format,
providing operation instructions for the agents that can consult it.

• The ws label denotes the workspace where the artifact is currently situated.

Definition 2.2.2 A workspace represents a place, the locus of activity involving a set
of agents and artifacts. Agents can join and quit workspaces in the system. Three sets
of actions are provided by a workspace for the agents:

• Actions to create, lookup and dispose artifact instances of the types provided by the
workspace;

• Actions to use artifact instances: execute operations; perceive observable properties
and events; and

• Actions to link and unlink artifact instances, so they can invoke operations between
each other.

In CArtAgO terms, the aspects that characterize a model for environment program-
ming are the following [76]:

1. Action model: how to perform actions in the environment.

2. Perception model: how to retrieve information from the environment.

3. Environment computational model: how to represent the environment in compu-
tational terms.

28

Figure 2.5.: The Agents and Artifacts meta-model, adapted from Ricci et al. [75]

4. Environment data model: how to share data between the agent and environment
level to allow interoperability.

5. Environment distributed model: how to allow computational distributed environ-
ments.

Aspects 1-3 are directly supported by artifacts [64], which are dynamical sets of com-
putational entities that compose the environment and encapsulate services and tools for
the agents. Artifacts are organized and situated in workspaces, which essentially are
logical places (local or remote) where agents center their attention and work. Aspect
5 is supported by workspaces, but also partially by artifacts, as artifact actions can
be executed remotely. Aspect 4, on the other hand, depends on the underlying agent
programming language used, and is not directly related to artifacts or workspaces.

CArtAgO considers distributed environments in its model. At the higher level, distri-
bution is achieved through workspaces, which serve as logical places where agents may
center their attention, and where artifacts are situated. Agents can create, join, and
quit workspaces. If an agent is in a workspace, it can use the artifacts situated there.

At the low level, nodes enable distribution. A node is a CArtAgO process that can
be remote, where workspaces can be spawned. When a JaCa MAS is deployed, it is
contained in a default node, that node is also the default for agents, which consider it
as it’s local context, so workspaces created in that node are also local workspaces, but
workspaces created in different nodes are considered remote workspaces. The distinc-
tion between remote and local workspace is not only conceptual, but also syntactical,
requiring IP and port information at the agent level to manipulate remote workspaces.

29

Figure 2.6 depicts the current CArtAgO environment model from the workspaces and
nodes perspective. From the figure, it is apparent the fact that there is no connection
between nodes, and in consequence between workspaces in different nodes, needing to
explicitly know the IP address and port of each node, which may be seen as a drawback.
In section 9.2 a proposal that addresses this issue is presented.

Figure 2.6.: Current CArtAgO environment model depicting multiple nodes and
workspaces deployed.

30

3. JaCa-DDM

In what follows, the JaCa-DDM framework is described in detail. For this, some for-
mal definitions of JaCa-DDM strategy and deployment are addressed. These definitions
conform an abstract model of the system, and will guide its description. Then, the archi-
tecture induced by the deployment system is introduced, which includes the description
of the primitive artifacts and agents of the system, and an account of the configuration
and workflow of the deployment process.

3.1. JaCa-DDM Model

The JaCa-DDM model is built on the concepts of strategy and its deployment. While a
strategy defines a DDM workflow in terms of the involved agents and artifacts, its deploy-
ment deals with configuration, distribution, and evaluation issues. Previous definitions
of agent program, message, artifact type, workspace, and node are adopted.

Definition 3.1.1 A tuple 〈Ags,Arts, Params, ag1〉 denotes a JaCa-DDM strategy, where:

• Ags = {ag1, . . . , agn} is the set of user defined agent programs, involved in the
strategy.

• Arts = {art1, . . . , artm} is the set of user defined artifact types, used in the strat-
egy.

• Params = {param1 : type1, . . . , paramk : typek, } is a set of paramenters and
their associated data types, where type1,...,k ∈ {int, bool, double, string}.

• ag1 ∈ Ags is a special agent program playing the role of contact person between the
agents in Ags and the deployment system. This agent must have a plan to cope
with a trigger event +!start, launching the strategy; and must eventually send a
message 〈ag0, tell, finish(art)〉 to announce the learning process is finished; where
ag0 is an agent in the deployment system, art ∈ Arts stores the obtained model.
Beyond that, ag1 can be programmed to do any other tasks proper of a contact
person.

The workflow contained in a strategy, i.e., the way the agents learn together using
their artifacts, is encapsulated in the agent programs. Chapter 4 uses UML sequence
diagrams to describe a set of such workflows in detail. All the deployment system needs
is an XML description of a strategy, this description follows definition 3.1.1.

31

Definition 3.1.2 A tuple 〈Nodes,DS,Arts, Strat, Config, ag0〉 is a JaCa-DDM de-
ployment system, where:

• Nodes = {node0, node1 . . . , nodej}, is a set of computational nodes, usually, but
not necessarily, distributed in a network, where: node0 is running Jason and
CArtAgO, while node1,...,j are running only CArtAgO. Each node defines a sin-
gle CArtAgO workspace, where artifacts are to be created, but all agents run in
node0. Each node is denoted by a pair 〈nodeName, IPaddress : port〉.

• DS = {ds1, . . . , dsj} is a set of data sources associated to each node, excepting
node0. Data sources can be created dinamically at run time; or be statically defined
in each node.

• Arts = {art1, . . . , arti} is a set of primitive artifact types, used to deploy the
system.

• Strat is a learning strategy as stated in Definition 3.1.1.

• Config = 〈δ, π〉 is a configuration for a strategy deployment. It has two compo-
nents:

– δ = {(ag, node, i), . . . }, is a set of allocations, i.e., an agent distribution spec-
ifying how many copies of a given agent program will be focusing (working) on
a given node. Where ag ∈ StratAgs is an agent program in the strategy, that
will be cloned i ≥ 1 times, and assigned to focus on node ∈ Nodes\{node0}.
When the node is evident, cloning is denoted as ag#i.

– π = {(p, v), . . . } is a set of pairs: strategy parameter, initialization value;
where for all p : t ∈ StratParams, p is a parameter of the strategy and v is its
value of type t.

The logic underlying the deployment is encapsulated in the agent program ag0, de-
ployment and configuration are described in detail in the next section.

3.2. JaCa-DDM Architecture

JaCa-DDM strategies can be deployed over a set of distributed computer nodes, as shown
in Figure 3.1. All agents run and communicate at node0; however, any node defines a
workspace that the agents can logically join to create, perceive, and use artifacts on
them. By the term logically, we mean that this is done exploiting Java remote method
invocation (RMI), since agents always run at node0. Apart from this node, all nodes
have associated data sources. In this way, the artifacts running learning algorithms can
be distributed efficiently, while communication among agents is kept as fast as possible.
Although the JaCa-DDM architecture was designed with distribution in mind, it is also
possible to execute it in a single computer to explore concurrency, running all workspaces
ws1,...,j also at node0.

32

node0

node1 …

Ja Ca ws0

Ca ws1

… nodej

dsj

Ca wsj

ds1

ag0

ag1 agn

art2

art1

art7

art6

artm

art4

art3

art5

join

create
communicate

link

create
perceive

use

Figure 3.1.: An overview of the JaCa-DDM architecture, introducing agents and artifacts
with their interactions. node0 running Jason and a CArtAgO workspace,
the rest of the nodes, running CArtAgO workspaces and having access to a
data source.

In what follows, primitive artifacts and agents provided in JaCa-DDM are introduced.
Artifacts come first, for the sake of clarity. Then, the configuration and deployment of
strategies are described in detail.

3.2.1. Artifacts.

JaCa-DDM artifacts are designed as wrappers for the classes of Weka [91], the well
known data mining environment; as well as MOA [11], the massive online analysis tool
based on Weka. This decision was adopted for reusing code with comparison purposes:
JaCa-DDM results can be fairly compared with the non-agent based results, obtained
by Weka and MOA.

JaCa-DDM provides predefined artifact types, as stated in definition 3.1.2, which are
listed in Table 3.1. User defined artifact types, as stated in definition 3.1.1, can also be
added as required, e.g., Bayesian classifiers.

It is important to observe the following guidelines when deploying artifacts: The arti-

33

Artifact type Description

Classifier A classifier tool, there are different kinds, depending on the
learning algorithm, e.g., J48, VFDT, and Bagging.

Directory A localization service for agents, artifacts, and workspaces.
Evaluator A Weka based evaluation tool for models.
GUI A front end to configure and launch experiments.
FileManager A tool to write ARFF files.
InstancesBase A Weka based training set.
LogBook An experiment logbook for reporting results.
Oracle A tool to distribute centralized data sets.
TrafficMonitor A sniffer to measure the load of a network.
Utils A swiss army knife for the agents.

Table 3.1.: Predefined Weka based artifact types in JaCa-DDM.

facts created must have unique names, despite the fact that they are placed in different
nodes. By convention, the name of an artifact includes the name of its creator to solve
this. If an artifact is going to be referred by artifacts in other nodes, such artifact needs
to be registered in the Directory.

3.2.2. Agents.

The agent program ag0 is executed when launching JaCa-DDM, and it can be seen as
an experimenter agent. It deals with the following tasks:

• Experiment configuration. Agent ag0 optionally creates a GUI artifact to interac-
tively configure the experiment, according to the adopted strategy. As stated in
Definition 3.1.2, configuration includes the distribution (δ) of the agents over the
nodes defined in the strategy; as well as the instantiation of its parameters (π).

• Dynamic data distribution. Agent ag0 optionally creates an Oracle artifact to
distribute a global data set among the nodes defined by the strategy. This is very
useful to compare centralized approaches versus distributed ones. Alternatively,
data can be already distributed among the nodes defined in the strategy, i.e., each
node has a data source.

• Traffic monitor. Agent ag0 creates a TrafficMonitor artifact in each node to mea-
sure the volume of network traffic generated by the experiment.

• Agents deployment. Agent ag0 creates and assigns to nodes the strategy agents, as
stated in the configuration. Initialization consists on communicating them useful
information:

– node(NodeName). Each agent knows the logical name of its assigned node.

34

– ipNode0(IP). The IP address and port of node0. This information can be
helpful to use artifacts that are only in node0, like the Directory.

– data(FilePath). The path to the data file of the node that is going to be
used for training.

– param(ParamId, V alue). A parameter assignment for the learning strategy.

– Some core plans to register artifacts, exchange models among artifacts, and
know how many copies of a given agent program are in the system.

• Evaluate models. Agent ag0 creates an Evaluator artifact and a LogBook artifact to
evaluate a model, and report results when receiving a message 〈ag1, tell, finish(Art)〉.

• Cleanup. If the experiment evaluation involves iterated repetitions of the setting,
agent ag0 cleanups the system restarting agents and artifacts as required by the
evaluation method.

Recall that ag1 ∈ StratAgs adopts the role of contact person between the agents in
the strategy and ag0. By Definition 3.1.1, there must be a single ag1 that can join
any workspace, as demanded by the strategy. As contact person, ag1 has at least two
responsibilities:

• Launching a learning process. When receiving a message 〈ag0, achieve, start〉, ag1
starts the strategy.

• Announcing a learning process is finished. When the learning process is finished,
ag1 sends a message 〈ag1, tell, finish(Art)〉 to ag0.

Other responsibilities for ag1 could include initialization tasks, e.g., ask the other
agents to load their training data, and even engaging in more complex coordination
tasks. Figure 3.2 illustrates this. Observe that apart from the existence of ag0 and ag1,
JaCa-DDM does not have any other assumption about the agents involved in a strategy.
This enables the generalization of the deployment process to any kind of strategy.

3.2.3. Configuration

Following definition 3.1.2, every strategy deployment needs to be configured through an
XML file that represents the experiment of interest. This XML file could be also generated
by the GUI artifact. Figure 3.3 depicts the corresponding XML schema. Basically, it is
possible to configure the following experimental aspects:

• Which learning strategy Strat is going to be adopted.

• The IP address and port of the different nodes {node1 . . . , nodej} involved in the
strategy deployment.

• The agent distribution δ; as well as the paramenter initialization π.

35

ag0

ag1

agn

art7

art6

artm

art4

art3

art5

join

link

…ag2

ws0ws1 wsj

Figure 3.2.: Agent ag1 adopts the role of contact person (bold arrow) between the ag0
and the rest of agents in the strategy.

• The data source distribution {ds1, . . . , dsj}.

• How many times an experiment is to be iterated.

Strategies need to be described in a standard way, following definition 3.1.1, in order
to be loaded by the JaCa-DDM deployment system (to be able to choose which strategy
to use). A XML file for each strategy needs to be defined for this purpose, which includes:
The name of the adopted strategy Strat; The Jason agent programs in StratAgs, and;
The parameters in StratParams. The XML files are validated through an XML schema,
which it is showed in figure 3.4.

Data sources {ds1, . . . , dsj} can be created in two different ways:

• Static data distribution. Data sources are already in the available nodes and each
node configuration indicates the path to its data source. Data sources can be
pointed as:

– A single file denoted by its name, e.g., iris.arff

– Multiple files denoted by their root name followed by a number, e.g., iris1.arff,
iris2.arff, etc.

• Dynamic data distribution. A single data source in node0 is distributed among the
other nodes, using one of two methods:

– Hold-out. The data source is split in test and training partitions, according
to a parameter defining the size of the test set (a percentage of the size of the
data source). The training partition is splited again, according to the number
of available nodes.

– Cross validation. A fold parameter is used to indicate the ratio of the examples
for training and testing. It also indicates how many iterations the testing will
have. For example, a 5-fold cross validation splits the data source into five

36

Figure 3.3.: XML schema of the strategy deployment.

Figure 3.4.: XML schema of an strategy.

37

partitions, in each iteration one partition is reserved for testing and four
are used for training. The process is repeated 5 times, selecting a different
testing partition each time. Training partitions are distributed according to
the number of available nodes.

The static and dynamic modes can be used together to do different experiments, with
exactly the same data partitions. The idea is to run the first experiment under the
dynamic mode; and then switching to the static mode, using the files produced in the
first experiment for all the subsequent ones.

3.2.4. JaCa-DDM Workflow

The workflow of JaCa-DDM is as follows1:

1. If the user is interested in configuring an experiment, an artifact of type GUI is
created by ag0. The artifact produces an XML file coding such configuration.
It is also possible to directly execute the experiment taking a configuration file
as parameter. Then, ag0 creates the following artifacts in node0: a LogBook, an
Evaluator, a TrafficMonitor, a Directory, a Utils artifact, and optionally an Oracle
artifact if the data source distribution is dynamic. ag0 also creates some artifacts
in each available node (node1, . . . , noden), a FileManager and a TrafficMonitor.
Once the artifacts are created, ag0 computes the data distribution specified in
the configuration, so that each node1, . . . , noden gets a path to its data source.
Afterwards, ag0 creates the agents specified in the strategy; and communicate
them core plans for joining remote workspaces, sending models, and registering
artifacts in the directory. After that, ag0 asks the created agents to join their
respective workspaces, as specified in the configuration. Figure 3.5 illustrates this
first step.

2. A message 〈agi, tell, ready〉 is sent to ag0 every time an agent agi=1,...,n joins her/his
workspace, to announce they are ready for starting the learning process.

3. ag0 sends a message to ag1, to launch the learning process. Once started, ag1
may tell the other agents to initialize the learning process. This may include, for
example, the creation and configuration of new artifacts. Meanwhile ag0 keeps
waiting for a termination message.

4. At the end of the learning process, a model has been computed and stored in a given
artifact, depending on the adopted strategy. Once ag1 is informed of the model
location, it sends a message 〈ag0, tell, finish(ArtifactName)〉 to ag0. Figure 3.6
summarizes steps three and four.

1A tutorial explaining how to get started with JaCa-DDM is available at
http://sourceforge.net/p/jacaddm/wiki

38

ag0

File
Manager

join

ws0

ws1

ws0

ag0

GUI creates

configuration

ag0

agn…ag1

ws0

wsj

EvaluatorLog
Book

Traffic
Monitor Oracle Directory

Traffic
Monitor

File
Manager

Traffic
Monitor

GUI

File
Manager

ws0ws1 wsj

EvaluatorLog
Book

Traffic
Monitor Oracle Directory

Traffic
Monitor

File
Manager

Traffic
Monitor

GUI

ds

ag0

ds1 dsj

File
Manager

ws1
Traffic

Monitor

ds1

wsj

File
Manager

Traffic
Monitor

dsj

GUI

EvaluatorLog
Book

Traffic
Monitor Oracle Directory

ds

tim
e

Figure 3.5.: Workflow step 1: Deployment of artifacts and agents.

39

ag0

agj

…
ag1

ws0 wsj

File
Manager

Traffic
Monitor dsj

GUI

EvaluatorLog
Book

Traffic
Monitor Oracle Directory

ds

ag2

Instances
Base

ws2

File
Manager

Traffic
Monitor ds2

Instances
BaseJ48-ag2 link

start

init

ag0

ag1

ws0
GUI

EvaluatorLog
Book

Traffic
Monitor Oracle Directory

ds

ag2 ws2

File
Manager

Traffic
Monitor ds2

Instances
BaseJ48-ag2 link

finish(J48-ag2) J48-ag2
agj

tim
e

wsj

File
Manager

Traffic
Monitor dsj

Instances
Base

Figure 3.6.: Workflow steps 3 and 4: ag0 starts a learning process, ag1 initialize the
agents in the strategy. More artifacts are created and configured in the
workspaces. Once the process is over, ag1 announce ag0 where is the learned
model.

5. When ag0 receives the message 〈ag1, tell, finish(ArtifactName)〉, the model is
retrieved for evaluation. Results are then displayed in the GUI artifact, and at the
same time, saved in a log file for future reference. Figure 3.7 summarizes this step.

40

ag0

ag1

ws0

EvaluatorLog
Book

Traffic
Monitor Oracle Directory

ds

ws2

File
Manager

Traffic
Monitor ds2

Instances
BaseJ48-ag2

agj

wsj

File
Manager

Traffic
Monitor dsj

Instances
Base

…

results GUI

evaluate

Figure 3.7.: Workflow step 5: The model in J48-ag2 is evaluated, results are displayed
in the GUI artifact.

6. ag0 joins each workspace and deletes the agents and artifacts created. Then, a new
iteration or experiment can be started.

In the next part, a series of learning strategies that exploit the concepts presented
here are introduced. These strategies serve as a proof of concept of how JaCa-DDM can
be used to implement traditional agent-based DDM approaches, as well as new ones, in
this case based on a technique know as Windowing.

41

4. JaCa-DDM strategies

As mentioned in section 1.6.2, agent based DDM has been focused in two extensively
discussed approaches: centralizing and meta-learning. The JaCa-DDM model is well
suited to deal with both approaches, that can be studied and extended through it. This
section addresses, as a proof of concept, the design and implementation of a set of
strategies covering centralizing and meta-learning. A third group of strategies explores
thoroughly an in between new approach, exploiting a technique known as Windowing [70,
35]. The technique consists on building an initial model in a given node, using local
training data, and then enhancing it with counter examples, those not covered yet, from
other nodes. Such process is not fully centralizing, since only the counter examples are
to be collected; and that a kind of sampling, different from the ones performed in meta-
learning approaches, is adopted. The set of Windowing-based strategies illustrates how
JaCa-DDM can be adopted to design and enhance new DDM systems.

Focus in Decision Trees is due to the adoption of Windowing, as a way of keeping
comparisons fair enough. Nevertheless, the proposed strategies are independent of the
target model and the associated learning algorithm, i.e., other models and algorithms
can be adopted. Extending JaCa-DDM in this sense is straightforward, e.g., use an-
other classifier artifact. Learning algorithms include: J48, the Weka implementation of
classical batch learning algorithm C4.5 [70]; VFDT [31], an incremental algorithm for
on-line learning; Bagging [17] the ensemble technique for meta-learning, and Random
Forest [18] a variant of Bagging. VFDT is able to update the learned model in the
presence of new training examples, this should allow faster strategies based on model
communication, since models use to be smaller than instances bases; but it is expected
that the strategies based on instances communication have higher accuracy. Bagging is
an ensemble technique where a set of learning models of the same type (J48 trees in this
case, for experimental purposes), are created from separate training datasets represent-
ing the same problem. The different models are gathered at a single place, and used for
classification, following a majority vote scheme. If the training data is scarce, Bagging
can be used in conjunction with bootstrap sampling, where all the training data of size m
is gathered, producing N training sets of size m by means of applying random sampling
with replacement. Generally, the more training sets, and in consequence the more learn-
ing models, the better the results, since this reduces the variance of the method [91]. In
the Weka definition of Bagging, it is possible to apply bootstrap sampling if desired, and
also compute the internal learning models in parallel. In Random Forest the result is
a set of decision trees, induced from bootstrap samples. Each tree induction is boosted
by randomly sampling the attribute vector for each node split, based on a parameter K,
determining the number of attributes taken into account at each node split. This makes
possible to process datasets with a large numbers of attributes. Small K values are

42

recommended, e.g., log2(|attributes|) + 1. Map-Reduce extensions [36] apply a careful
subsampling, in order to avoid sampling bias, but this is difficult in distributed scenar-
ios where sites are naturally biased. Windowing may be useful as a sampling method,
purposefully trying to skew the training example distribution, by considering only the
counter examples found while learning [35]. Since Windowing samples while the model
is learned, no extra sampling step is needed.

Then, four sets of strategies are addressed in this section:

• Centralized. Designed for benchmark. They are not true DDM strategies as they
have as a basis the traditional centralized scenario, where all the training data is
in one place. When possible, centralized approaches are the best, since there is
no communication cost. Unfortunately, this approach could not scale well when
dealing with massive amounts of data.

• Centralizing. Collect, if possible, all the training data distributed in the system
in a single node, and then proceed as in the precedent case. They incur in data
transmission costs.

• Meta-learning. Focus is on the way that meta-learning is supported by JaCa-
DDM trough the implementation of a Bagging based strategy. Although results
are compared with the other groups of strategies, the main interest here is to show
the flexibility and extensibility of our approach, rather than establishing which set
of strategies is the best. Bagging was chosen considering that it is well suited for
distributed environments, since it does not necessarily need a special sampling of
the data (in distributed scenarios it is normal to have biased data), whereas other
traditional methods such as Boosting [34] do. It is worth noting that JaCa-DDM
also supports special sampling of the data through the use of the Oracle artifact,
and user defined artifacts.

• Windowing-based. Proposed alternative, exploring the use of the Windowing tech-
nique in DDM settings, as its potential reduction of training examples needed for
learning, could be exploited in order to reduce data communication and also reduce
induction time for large datasets.

The processes underlying these strategies are described as UML sequence diagrams.
As stated in Section 9.2.1, the actual process is defined through agent programs. In each
sequence diagram, artifacts are represented as rounded boxes, while agent programs
appear as human figures labeled with the name of the agent, and suffixed with their
number of clones, e.g., contactPerson#1 produces the label contactPerson 1. Requests
from agents to artifacts represent the execution of an artifact operation, parameters
may be required. Requests from agents to agents represent speech acts messages. Their
illocutionary force ilf (See Definition 2.1.2) are denoted as follows: tell (+), achieve
(!), and ask (?), e.g., when an agent ag1 requests ag2 to !start, it is sending a message
〈ag2, achieve, start〉; while ag2 is receiving a message 〈ag1, achieve, start〉. Requests
from artifacts to artifacts represent linked operations, possibly including parameters.

43

When an artifact A makes a request to artifact B, it is executing a link operation of B.
Most return messages from artifact operations are omitted, for the sake of readability.
Representing nodes required a slight non standard extension in the UML diagrams,
artifacts situated in the same node are surrounded by a dotted frame. Because of the
available space, the agent ag0 is represented implicitly outside the diagrams, as sending
the start message and receiving the finish message. Sub-diagrams are used as required.

4.1. Centralized strategies

The set of strategies presented in this section are used only as a benchmark, not being
DDM approaches of interest. Centralized strategies include:

• Centralized. This is not properly a strategy, but the reproduction of a traditional
centralized scenario. All data is in a single node, and the Data Mining process is
run as usual. It is used to compare the results of the JaCa-DDM strategies, with
the results that Weka and MOA would usually obtain. Observe there is no data
communication in these scenarios.

• Centralized Bagging. Equivalent to applying Weka Bagging with bootstrap sam-
pling in a centralized environment. It is essentially the same strategy as Central-
ized, but presented separately as it is used for meta-learning, requiring different
parameters.

In what follows, each centralized strategy is described in detail, following JaCa-DDM
model definition 3.1.1.

4.1.1. Centralized strategy

The centralized strategy reproduces the standard centralized Data Mining setting, where
all data is in a single node and the Data Mining process is executed there. The compo-
nents of this strategy are as follows:

• Ags = {contactPerson}, where:

– contacPerson is the required agent program playing this rol. Beyond its basic
competences, it is in charge of inducing learned models.

• Arts = {Classifier, InstancesBase}, where:

– Classifier. It is used to induce models and classify instances. Predefined
classifiers include J48, and V FDT .

– InstancesBase. Used to store and manipulate the learning examples.

• Params = {Classifier : String, Prunning : Bool}, where

– Classifier ∈ {J48, V FDT} specifies the adopted learning algorithm.

– Prunning, if true, forces the learning algorithms to use post pruning.

44

Figure 4.1.: Centralized strategy sequence diagram. The !start message is sent by ag0
in the deployment system, whereas the +finish message is received by it.

A typical configuration for deploying this strategy is as follows:

• δ = {(contactPerson, node1, 1)};

• π = {(Classifier, J48), (Pruning, true)}.

Figure 4.1 shows the workflow of this strategy, under such a configuration. When
contacPerson receives a message !start from ag0, asking him to achieve the DDM process,
it creates an InstancesBase and a J48 Classifier at node1. Then, it loads the data source
associated to node1 in its InstancesBase. Once there, the training examples are sent to
the linked artifact Classifier, where the learned model is induced. Finally, contactPerson
sends ag0 a message telling him that the DDM process is over, and the obtained model
is in Classifier.

4.1.2. Centralized Bagging

The strategy applies the Bagging meta-learner with bootstrap sampling in a standard
centralized Data Mining setting, as it would be done with Weka. The components of
this strategy are as follows:

• Ags = {contactPerson}, where:

– contacPerson, beyond its basic competences, is in charge of inducing learned
models.

• Arts = {ClassifierBagging, InstancesBase}, where:

– ClassifierBagging. It is used to induce meta-models and classify instances.
It can use as internal models any classifier provided by Weka, such as bayesian
networks, decision trees, support vector machines, etc.

– InstancesBase. Used to store and manipulate the learning examples.

45

Figure 4.2.: Centralized bagging strategy sequence diagram.

• Params = {Threads : Int,NumberOfModels : Int, ClassifierType : String,
ClassifierParams : String}, where

– Threads establishes the number of threads that the induction process will
have. If not provided (value 0) it uses the maximum number of parallel
threads that the computer node can support.

– NumberOfModels specifies the number of models in the ensemble, this is
equivalent to establishing the number of bootstrap data partitions from the
training set. If not provided (value 0) it takes the same value as the Threads
parameter.

– ClassifierType is the Weka classifier that will be used as the internal models
of the ensemble, by default J48.

– ClassifierParams specifies the optional parameters of the internal models
following Weka notation.

A typical configuration for deploying this strategy is as follows (by default, in Weka
J48 prunning is active):

• δ = {(contactPerson, node1, 1)};

• π = {(Threads, 32), (NumberOfModels, 32), (ClassifierType :
”weka.classifiers.trees.J48”), (ClassifierParams : ””)}.

Figure 4.2 shows the workflow of this strategy, under such configuration.
At the beginning of the process, contacPerson1 creates an InstancesBase and a Clas-

sifierBagging at node1. Then, it loads its data source associated in its InstancesBase.
Next, the training examples are sent to ClassifierBagging, where the meta-classifier is
induced.

46

4.2. Centralizing strategies

Centralizing strategies consider distributed settings, they use all the available data in
the learning process. This set of Strategies include:

• Centralizing. The same as centralized, but data sources are actually distributed
in different nodes. It takes into account the time and communication required to
centralize the data.

• Round. This strategy also uses all data in the system, but instead of commu-
nicating examples, it moves the learned model through the nodes. In this way,
not only communication cost is improved, but privacy too. Incremental learning
algorithms, e.g., VFDT, are required to implement this strategy.

4.2.1. Centralizing strategy

The centralizing strategy consists in sending all the available training examples to a single
node, and proceed then as in the centralized case. The components of this strategy are
as follows:

• Ags = {contactPerson, sender}, where:

– contactPerson builds the learned model, beyond its basic competences.

– sender is in charge of collecting training instances for contactPerson.

• Arts = {Classifier, InstacesBase}, as before.

• Params = {Classifier : String, Prunning : Bool}, as before.

A typical configuration for deploying this strategy is as follows:

• δ = {(contactPerson, node1, 1), (sender, node1, 1), . . . , (sender, nodej , 1)};

• π = {(Classifier, J48), (Pruning, true)}.

Figure 4.3 shows the workflow of this strategy. When contactPerson receives an !start
message from ag0, it creates a Classifier artifact. There are sender#j clones, one for
each nodei=1,...,j . Each sender creates an InstancesBase in its node. Observe that the
diagram focus on the interactions between a sender and a node, but this generalizes to j
agents, focusing on j nodes. The contactPerson asks all the sender agents to load their
data sources. Once the data sources are loaded, each sender adds its training examples
to the Classifier in node1. Once all training exampres are centralized, contactPerson
builds a new model, and notifies ag0.

47

Figure 4.3.: Centralizing strategy sequence diagram. Observe that par(sender i) means
these parts of the process are parallel for each agent program senderi, where
i = 1, . . . , j denotes any sender (an so, any associated node).

4.2.2. Round strategy

The round strategy consists in learning an initial model with all the examples from one
node, and then updating it to each node in a round fashion. When it is the turn of
a given node, the model is updated with all the locally available data, and then it is
moved to the next node. The process continues until a round is completed. Because of
its nature, the use of incremental learning algorithms, e.g., VFDT, is mandatory. The
components of the strategy are as follows:

• Ags = {contactPerson,worker}, where:

– contactPerson controls the rounds, beyond its basic competences.

– worker is in charge of updating a learned model it receives, using its training
examples.

• Arts = {Classifier, InstancesBase}, as before;

• Params = ∅, since only the VFDT algorithm is available. If other incremental
algorithms were available, this is the place to choose one of them.

A typical configuration for deploying this strategy is as follows:

• δ = {(contactPerson, node1, 1), (worker, node1, 1), . . . , (worker, nodej , 1)};

• π = ∅.

48

Figure 4.4.: Round strategy sequence diagram. Observe that the operation
add(examples) does an implicit induction, since the classifier is incremental.

Figure 4.4 shows the workflow for this strategy. Because of the available space, only
the first two workers are shown, but the workflow generalize to j workers focusing on
j nodes. Once contactPerson starts the DDM process, it asks the worker agents to
create an InstancesBase and a Classifier in their nodes. Then, contactPerson asks the
workers to load their data sources and creates a queue of available workers. After that,
contactPerson asks worker1 to send its examples to its classifier, inducing a model; and
to pass it to worker2. Recall that the learning algorithm is incremental, it updates the
model when receiving examples. Once this is done, contactPerson is notified by worker1.
Then, worker2 is asked to do the same and share the model with worker3 and so on. As
usual, contactPerson notifies ag0 when the rounds of all nodes is over, and the obtained
model is in Classifierj (j = 2 in the diagram).

4.3. Meta-learning strategies

This section illustrates how meta-learning based strategies for DDM can be defined and
implemented in JaCa-DDM terms, using as a case study the Bagging meta-classifier.
Although different from centralizing approaches, meta-learning methods can also be
represented through a set of coordinated and communicative agents, that use Weka-

49

based artifacts in a distributed network.
The strategy presented in this section, Distributed Bagging, is intended for DDM

settings, and it constitutes an ensemble of ensembles, that is, in each distributed node
a Bagging with bootstrap sampling learner is produced, and then each meta-learner is
assembled as a single one at a centralized node.

Note that it is also possible to implement the distributed Bagging strategy using
individual classifiers in each node instead of the Bagging meta-classifier, but as the
JaCa-DDM model entails the reuse of existing code through artifacts, and the Weka
implementation of Bagging has the advantage of being parallelizable, it was choosen
to exploit this characteristic in order to have more models in each node with no special
extra cost in time, except for transmission time. In what follows the distributed Bagging
strategy is addressed.

4.3.1. Distributed Bagging

This strategy consists on building Bagging meta-learners with bootstrap sampling in
each distributed node, and then assembly them as a single one in a centralized node
(i.e., all the internal models are aggregated to the same bag). The components of the
strategy are as follows:

• Ags = {contactPerson, bagger}, where:

– contacPerson beyond its basic competences, asks the bagger agents to induce
and send its meta model to the Bagging assembler that controls.

– bagger uses its training data to build a Bagging meta-classifier, and then
sends it to a centralized Bagging assembler.

• Arts = {ClassifierBaggingEnsemble, ClassifierBagging, InstancesBase}, where:

– ClassifierBaggingEnsemble. Assembles various Bagging models, in order
to treat them as a single Bagging model.

– ClassifierBagging. It is used to induce meta-models and classify instances.
It can use as internal models any classifier provided by Weka, such as bayesian
networks, decision trees, support vector machines, etc.

– InstancesBase. Used to store and manipulate the learning examples.

• Params = {ThreadsPerNode : Int,ModelsPerNode : Int, ClassifierType :
String, ClassifierParams : String}, where

– ThreadsPerNode establishes the number of threads that the induction pro-
cess in any node will have. If not provided (value 0) it uses the maximum
number of parallel threads that the computer node can support.

– ModelsPerNode specifies the number of models in the ensemble for any node,
this is equivalent to establishing the number of bootstrap data partitions from
the training set. If not provided (value 0) it takes the same value as the
ThreadsPerNode parameter.

50

Figure 4.5.: Distributed bagging strategy sequence diagram. bagger i represents any
bagger, i.e i = 1, ..., j (the same goes for node i).

– ClassifierType is the Weka classifier that will be used as the internal models
for the ClassifierBagging artifacts, by default J48.

– ClassifierParams specifies the optional parameters of the internal models
for the ClassifierBagging artifacts, following Weka notation.

A typical configuration for deploying this strategy is as follows (by default, in Weka
J48 prunning is active):

• δ = {(contactPerson, node1, 1), (bagger, node1, 1), ..., (bagger, nodej , 1)};

• π = {(ThreadsPerNode, 32), (ModelsPerNode, 32), (ClassifierType :
”weka.classifiers.trees.J48”), (ClassifierParams : ””)}.

Figure 4.5 shows the workflow of this strategy, under the mentioned configuration.
At the beginning of the process, contacPerson1 creates a ClassifierBaggingEnsemble at
node1 and asks the bagger agents to load their data into their InstancesBase artifacts
and to create ClassifierBagging artifacts. When all the bagger agents announce to the
contacPerson1 that they are ready, contacPerson1 asks them to create their Bagging
model and send it to its ClassifierBaggingEnsemble. The baggers send their training
data to their ClassifierBagging and then induce a Bagging model. When this process is
done, the resulting model is sent to the central ClassifierBaggingEnsemble.

51

4.3.2. Distributed Random Forest

This strategy consists on building Random Forest meta-learners with bootstrap sampling
in each distributed node, and then assembly them in a single forest in a centralized node
(i.e., all the internal forest are aggregated to the same forest). The components of the
strategy are as follows:

• Ags = {contactPerson, bagger}, where:

– contacPerson beyond its basic competences, asks the bagger agents to induce
and send its meta model to the Bagging assembler that controls.

– worker uses its training data to build a forest meta-classifier, and then sends
it to a centralized forest assembler.

• Arts = {ClassifierRandomForestEnsemble, ClassifierRandomForest, InstancesBase},
where:

– ClassifierRandomForestEnsemble. Assembles various forest models, in or-
der to treat them as a single forest.

– ClassifierRandomForest. It is used to induce meta-models and classify
instances. It can use as internal models any classifier provided by Weka, such
as bayesian networks, decision trees, support vector machines, etc.

– InstancesBase. Used to store and manipulate the learning examples.

• Params = {ThreadsPerNode : Int,ModelsPerNode : Int, ClassifierType :
String, ClassifierParams : String}, where

– ThreadsPerNode establishes the number of threads that the induction pro-
cess in any node will have. If not provided (value 0) it uses the maximum
number of parallel threads that the computer node can support.

– ModelsPerNode specifies the number of models in the ensemble for any node,
this is equivalent to establishing the number of bootstrap data partitions from
the training set. If not provided (value 0) it takes the same value as the
ThreadsPerNode parameter.

– ClassifierType is the Weka classifier that will be used as the internal models
for the ClassifierBagging artifacts, by default J48.

– ClassifierParams specifies the optional parameters of the internal models
for the ClassifierRandomforest artifacts, following Weka notation.

A typical configuration for deploying this strategy is as follows (by default, in Weka
J48 prunning is active):

• δ = {(contactPerson, node1, 1), (worker, node1, 1), ..., (worker, nodej , 1)};

• π = {(ThreadsPerNode, 32), (ModelsPerNode, 32), (ClassifierType :
”weka.classifiers.trees.J48”), (ClassifierParams : ””)}.

52

Figure 4.6.: Distributed Random Forest strategy sequence diagram. worker i represents
any worker, i.e i = 1, ..., j (the same goes for node i).

Figure 4.6 shows the workflow of this strategy, under the mentioned configuration. At
the beginning of the process, contacPerson1 creates a ClassifierRandomForestEnsemble
at node1 and asks the worker agents to load their data into their InstancesBase artifacts
and to create ClassifierRandomForest artifacts. When all the bagger agents announce to
the contacPerson1 that they are ready, contacPerson1 asks them to create their forest
model and send it to its ClassifierRandomForestEnsemble. The workers send their train-
ing data to their ClassifierRandomForest and then induce a forest model. When this
process is done, the resulting model is sent to the central ClassifierRandomForestEnsem-
ble.

4.4. Windowing-based strategies

The following strategies exploit a technique known as Windowing [70], originally designed
to cope with memory limitations when executing C.45, the classical system for inducing
Decision Trees. Windowing (Algorithm 4.4.2) consists in learning a model from a small
random sample extracted from the whole training set, the window. Then, the counter
examples found in the remaining training set, if any, are added to the window. A counter
example is a missclassified example, i.e., its class is not predicted correctly by the model.
A new model is computed with this extended window. The process is repeated until a
stop criteria is met, e.g., there are no more available counter examples.

53

Algorithm 4.4.1 The Windowing algorithm.

function Windowing(Examples)
Window ← sample(Examples)
Examples← Examples−Window
repeat

stopCond← true
model← induce(Window)
for example ∈ Examples do

if classify(model, example) 6= class(example) then
Window ←Window ∪ {example}
Examples← Examples− {example}
stopCond← false

until stopCond
return model

Windowing did not get very popular [35], due to the fast memory size improvements
and, more importantly, because the learned models computed in this way, do not im-
prove significantly; while, searching the counter examples increases the computational
costs. Nevertheless, if a centralizing strategy is not possible, nor convenient, windowing
provides a tool for approaching models as good as those obtained in standard centralized
scenarios.

All the Windowing-based JaCa-DDM strategies presented in this section do the rounds
of the available nodes, as suggested by the main loop of Algorithm 4.4.2. Variations
include: the number of examples used to compute the initial model; the way counter
examples are collected, and their number in each round; the stop conditions, e.g., a
threshold in accuracy improvement. The general sequence diagram for all Windowing-
based strategies is shown in Figure 4.7. When receiving a !startmessage, contactPerson1
asks all worker agents to load their data sources. For this, each workeri has created
previously an InstancesBasei artifact. Then, contacPerson1 asks worker1 to create
a learned model using a percentage of its available training examples. Once this is
done, contactPerson1 creates a queue of worker agents to iterate on them the process
of counter example gathering. JaCa-DDM Windowing-based strategies vary in their
counter examples gathering processes. For the sake of clarity, the workflow to determine
the stop criteria is simplified in Figure 4.7 : contactPerson1 asks roundController1 if
another round is required. Depending on the answer, contactPerson1 can iterate the
process one more time; or tell ag0 that the process is over and the learned hypothesis is
in Classifier1. There are different possible ways of determining the stop criteria. Fewer
rounds produce faster DDM processes, but the accuracy of the obtained models tends to
decrease. Iterating until all counter examples have been processed, as in Algorithm 4.4.2,
can be impractical, if few counter examples are considered in each round; or unnecessary,
if updating converges fast to an acceptable model.

54

Figure 4.7.: Windowing-based strategies general sequence diagram. worker i represents
any worker except worker 1 (the same goes for associated node i), i.e. i =
2, ..., j.

Figure 4.8 details the workflow for an auto-adjust method to determine the stop cri-
teria. The method consists on reserving a validation set to evaluate the model at the
end of each round. If the accuracy of the current model compared with the accuracy
of the previous round surpasses a given threshold, then the process continues, otherwise
the process stops. The threshold value and the percentage of the training data used
for validation are configurable parameters. The workflow for the auto-adjust method
starts when contactPerson1 tells roundController1 the name of the node where the
last computed model for the iteration (nodej) will be located, where roundController1
creates a Evaluatorj and reserves a validation set in it. After the counter examples
gathering process, roundController1 evaluates the accuracy of the obtained model to
tell contactPerson1 if another iteration should be done or not.

55

Figure 4.8.: Auto-adjust method sequence diagram for determining the stop criteria.
This diagram complements Figure 4.7.

The set of Windowing-based strategies include:

• Counter. All counter examples are sent to the node where the initial model has
been computed. The process iterates n predefined rounds, or an auto-adjust pro-
cedure can stop the iterations.

• Round Counter. The learned model is communicated instead of the counter exam-
ples. It requires an incremental learning algorithm as VFDT. The process iterates
n predefined rounds, or an auto-adjust procedure can stop the iterations.

• Parallel Round Counter. It is similar to the previous strategy, but counter examples
are searched in parallel, once the initial model is shared in all the nodes. Updating
the hypothesis proceeds as in Round Counter.

In what follows, each Windowing-based strategy is described in detail, following Def-
inition 3.1.1.

56

4.4.1. Counter strategy

The counter strategy consists in gathering all the counter examples found in a node,
and sending them to the classifier artifact used to build the learned model for updating
it. The processes continues for a given number or rounds or until the round auto-adjust
procedure determines it is over. The componentes of this strategy are as follows:

• Ags = {contactPerson,worker, roundController}, where:

– contactPerson controls the rounds and induces the learned model, beyond its
basic competences.

– worker gathers counter examples.

– roundController determines if the auto-adjust stop condition has been met.

• Arts = {Classifier, InstancesBase,Evaluator}, where:

– Classifier. Defined as before.

– InstancesBase. Defined as before.

– Evaluator. It is used to compute the accuracy of a model given a validation
set, for the auto-adjust stop procedure.

• Params = {Classifier : String, Prunning : Bool, InitPercentage : Double,
V alidationPercentageForRounds : Double, ChangeStep : Double,MaxRounds :
Int}, where:

– Classifier. Defined as before.

– Prunning. Defined as before.

– InitPercentage defines the size of the initial training set, i.e., the initial
window size.

– V alidationPercentageForRounds defines the size of the validation set for
the auto-adjust stop procedure.

– ChangeStep defines a threshold of minimum change between two consecutive
rounds. Used by the auto-adjusted stop procedure.

– MaxRounds defines the maximum number of rounds.

A typical configuration for deploying this strategy is:

• δ = {(contactPerson, node1, 1), (roundController, node1, 1), (worker, node1,
1), . . . , (worker, nodej , 1)};

• π = {(Classifier, J48), (Pruning, true), (InitPercentage, 0.25),
V alidationPercentageForRounds, 0.20), (ChangeStep, 0.35), (MaxRounds, 15)}.

57

Figure 4.9.: Counter strategy sequence diagram for counter examples gathering work-
flow. worker i represents any worker, i.e i = 1, ..., j (the same goes for
node i). Recall this process is part of the general windowing based strategy
shown in Figure 4.7.

Figure 4.14 shows the workflow of the counter strategy. The process iterates over all
workers.

At the beginning, contacPerson1 sends the current model to the Classifieri arti-
fact of workeri=1. Then it asks the worker to search for counter examples in their
InstancesBasei and send them to Classifier1, where a new model is induced. Then
the process is repeated with workeri=2, and so on.

4.4.2. Round Counter

This strategy combines the round (Section 4.2.2) and the counter (Section 4.4.1) strate-
gies, so that it requires an incremental learning algorithm, e.g. VFDT. The idea is to
share a model, created as in the counter strategy, doing the rounds of the available
nodes. In each node, the model is updated with local counter examples. The process
is repeated a given number of times, or the auto-adjust method is used instead. The
componentes of this strategy are as follows:

• Ags = {contactPerson,worker, roundController}, where:

– contactPerson controls the rounds, beyond its basic competences.

– worker searches for counter examples and integrates them into the current
model, then passes the model to the next worker.

– roundController determines if the auto-adjust stop condition has been reached.

58

Figure 4.10.: The round counter strategy sequence diagram. worker i represents any
worker, i.e i = 1, ..., j (the same goes for node i). Note that when i = j,
i + 1 = 1. Recall this process is part of the general windowing based
strategy shown in Figure 4.7.

• Arts = {Classifier, InstancesBase,Evaluator}, defined as before.

• Params = {InitPercentage : Double, V alidationPercentageForRounds : Double,
ChangeStep : Double,MaxRounds : Int}, defined as before.

A typical configuration for deploying this strategy is as follows:

• δ = {(contactPerson, node1, 1), (roundController, node1, 1),
(worker, node1, 1), . . . , (worker, nodej , 1)};

• π = {(InitPercentage, 0.25), V alidationPercentageForRounds, 0.20),
(ChangeStep, 0.35), (MaxRounds, 15)}.

Figure 4.10 shows the sequence diagram for the round counter strategy. At the
beginning,contactPerson1 asks each workeri, one at a time, to proceed as follows: To
search for counter examples in InstancesBasei and update the model in Classifieri
with them; then, to send the updated model to the Clasifieri+1 of the next worker.

4.4.3. Parallel Round Counter

While the round counter strategy iterates over the nodes in a strict sequence, this strat-
egy parallelize the searching for counter examples, in an attempt to accelerate the overall
process. An initial model is computed and copied to all the nodes. In parallel, each node

59

gathers counter examples; After that, a round counter of the nodes starts to update the
initial model, exploring only the counter examples gathered in the previous parallel
phase. The process is repeated a given number of times, or the auto-adjust method is
used to determine the stop criteria. The componentes of this strategy are as follows:

• Ags = {contactPerson,worker, roundController}, where:

– contactPerson controls the parallel and the round phases, beyond its basic
competences.

– worker searches counter examples of the initial model during the parallel
phase; then, in the round phase, searches for further counter examples to
update the current model, passing it to the next worker.

– roundController determines if the auto-adjust stop condition has been reached.

• Arts = {Classifier, InstancesBase,Evaluator}, defined as before.

• Params = {InitPercentage : Double, V alidationPercentageForRounds : Double,
ChangeStep : Double,MaxRounds : Int}, as before. A typical configuration for
deploying this strategy is as before for the Round Counter strategy.

Figure 4.11 shows a sequence diagram for the parallel round counter strategy. At the
beginning, contactPerson1 asks each workeri to create an artifact InstancesBasecounti
to store counter examples. Then it sends the current model to each Classifieri, asking
each workeri to search for counter examples of it. Counter examples are gathered in
parallel in InstancesBasecounti. Once this is done, the workflow continues in the same
way as in the round counter strategy (Section 4.4.2).

4.4.4. GPU enhanced Windowing strategies

The Algorithm 4.4.2 describes the basic Windowing method. Although the stopping
condition may vary, the traditional criterion is to stop when no more counter examples
are found.

Algorithm 4.4.2 The basic Windowing algorithm.

1: function Windowing(Exs)
2: Window ← sample(Exs)
3: Exs← Exs−Window
4: repeat
5: stopCond← true
6: model← induce(Window)
7: for ex ∈ Exs do
8: if classify(model, ex) 6= class(ex) then
9: Window ←Window ∪ {ex}

10: Exs← Exs− {ex}
11: stopCond← false

60

Figure 4.11.: The parallel round counter strategy sequence diagram. worker i represents
any worker, i.e i = 1, ..., j (the same goes for node i). Recall this process
is part of the general Windowing based strategy shown in Figure 4.7.

12: until stopCond
13: return model

Windowing was criticized because the learned models were not only unable to signif-
icantly outperform the traditional centralized approaches, but an extra computational
cost resulted of the search for counter examples. Nevertheless, the method can achieve
significant run-time gains in noise-free domains [35] and reduces significantly the number
of training examples used to induce the models.

The Algorithm 4.4.2, involves two main subprocesses repeated iteratively: the model
induction (Line 6); and the search for counter examples (Lines 7–11). It was found
that, when large amounts of data are involved, reducing the number of examples used
in the induction can potentially boost time performance, even if the process is repeated
iteratively; but, for this to happen, the searching for counter examples must also be
accelerated using GPUs.

Related to GPUs, there are efforts to induce decision trees using GPUs [52, 81]; and
different frameworks that try to boost time efficiency of Data Mining process through
GPUs have been proposed [54, 86], but distributed settings have not been considered.
Using JaCa-DDM further enhances the performance of the processes and helps to over-
come GPU memory limitations.

61

Enhancing the inductive process

There are two ways of improving the time performance of the inductive process: altering
the inductive algorithm itself, e.g., using parallel computing, incremental computing,
GPU boosting, etc.; and keeping the size of the window as small as possible. The second
approach is adopted here, while the first one is considered for future work.

The proposed enhancement exploits the fact that some counter examples seem redun-
dant in the following sense: suppose a decision tree is computed with a given window
and the remaining set of training examples are classified as shown in Fig. 4.12. In order
to enhance such a tree, Windowing adds all the counter examples to the window to
execute a new inductive process. This happens in all the leaves of the tree. Now, if two
counter examples reach the same leaf when classified, they are alike in the sense that
they were misclassified for similar reasons, i.e., their attributes values are similar.

+ + + +
+ + + - -

- - -
Correctly classified

examples Alike counter
examples

Figure 4.12.: Alike counter examples (-) are those that reached the same leaf when clas-
sified. Correctly classified examples (+) are not considered in the itera-
tion, while some alike counter examples are added to the window in each
iteration.

Since smaller windows mean faster inductions, is hypothesized that it is unnecessary
to add all the alike counter examples to the window at once, in order to obtain the
desired accuracy levels, faster. Three parameters are proposed to control the number of
alike counter examples being added to the window in each iteration:

• µ defines the percentage of randomly selected counter examples per leaf to be
added to the window;

• ∆ defines a percentage increment of µ, applied at each iteration and;

• γ defines the minimun number of examples per leaf, required to apply any filtering
at all.

With these parameters, the function to know how many counter examples are sampled
for each tree node in any given iteration is the following:

keep(C, i) =

{
|C| If |C| < γ ∨ µ+ incr(µ) ≥ 1

|C| × (µ+ incr(µ)) Otherwise

62

Where: C is a set of counter examples in a given node; i the current iteration starting
at 0; and incr(µ) = i ×∆. On the first rounds of Windowing, the sets of alike counter
examples tend to be big; as the model improves and more leaves are created, these
sets become smaller. Given these observations, parameters are set to discard more
counter examples at the beginning of the process, and discard less counter examples as
Windowing progresses. The method is implemented in GPUs as a part of the parallel
search of counter examples.

Enhancing the searching for counter examples process

The searching for counter examples can be accelerated using GPUs, in order to achieve a
negligible time cost for this process. This enhancement requires representing the decision
trees and the training examples in data structures well suited for CUDA [61], as well as
implementing the corresponding classification and filtering algorithms as kernels.

Decision trees have two kinds of nodes: internal and leaf nodes. Internal nodes rep-
resent attributes and leaf nodes, class values. Arcs represent a boolean function over
the attribute values, and each function over the same node is mutually exclusive. There
are three kinds of arc functions, each of them bound to the boolean operators: ≤, >,
=. The first two are for numerical attributes, and the last for nominal ones. Given a
decision tree, and an unclassified instance, a classification process consist of traversing
arcs yielding true values on its function, from the root to a leaf.

When using GPUs, it is good practice to avoid irregular and complex data structures.
Scattered memory access is not efficient and affects the performance of the GPU cache
memories. It is better to read large blocks of memory in order to exploit coalesced
memory access, i.e., combining multiple memory accesses into a single transaction. With
these ideas in mind, a plain representation based on one dimensional arrays was adopted
to represent GPU Decision Trees. The structure consists on various properties, related
to node and arc information:

• NODES NUM : how many nodes (including leaves) the tree has.

• nodeAttr[NODES NUM]: contains the attribute index for each node. On the case
of a leaf node, it contains the index of the class value.

• nodeLeaf[NODES NUM]: a unique number that identifies the leaf, an internal node
contains value 0.

• nodeArcs[NODES NUM]: the number of outgoing arcs of each node.

• ARCS NUM: the number of arcs in the tree.

• arcType[ARCS NUM]: the evaluation function of the arc: ≤, >, =.

• arcVal[ARCS NUM]: the evaluation value of the arc.

• arcNode[ARCS NUM]: the index of the destination node pointed by the arc.

63

A method that takes a Weka J48 Tree and transforms it to a GPU Decision Tree
was implemented in the J48 artifact. A kernel (in CUDA terms) is a function that
executes on a device (GPU). Kernels are intended to be executed in parallel, receiving
parameters to define the number of threads to be used. The implemented kernels take
into account the counter examples filtering process and the counter examples reduction
method described before. The implemented kernels include:

• classify : Return the index value of the predicted class of an instance, and the
identifier of the leaf node reached.

• searchCounter: Classifies each instance within the instance set in GPU, and if the
predicted class is different from the actual class, then it saves the index of the
instance in an array as big as the instance set. Each thread receives the number
of instances that will process. At the end of its work, each thread also saves the
number of counter examples found and the leaf indexes of them.

• countSize: Computes a sum over each thread result of the searchCounter kernel to
yield the total number of counter examples found.

• countersPerLeaf: Creates a vector with the necessary number of counter examples
per leaf, taking into account a percentage and minimum number of counter exam-
ples according to the proposed counter examples reduction method (section 4.4.4).

• genResult: “Shrinks” the array that contains the counter examples indices found
by the searchCounter kernel, saving the indices on a new array that is the exact
size of the counter examples found.

• filterParallel: Filters out the counter examples from the dataset in the GPU.

Training examples are represented in the GPU as numeric arrays of size n, where
each index 0, . . . , n − 1 represents the value of the attribute with the same index. The
last element of the array represents the class value. The searching for counter examples
process requires to load the training examples into the GPU at the beginning of the
Windowing process. A copy of them is held in the CPU. It is also necessary to determine
the number of multi-processors, and the maximum number of parallel threads of each
multi-processor, in order to define an ideal number of working threads. The filtering
process, from the host’s (CPU) point of view, can be summarized in the following steps:

1. Transform the current J48 Tree into a GPU Decision Tree.

2. Load the GPU Decision Tree in the GPU.

3. Invoke the searchCounter kernel on the ideal number of threads.

4. Invoke the countSize kernel on one thread.

5. Use the result from countSize to invoke countersPerLeaf to reserve enough memory
on the GPU to save all the counter example indices on an array.

64

6. Invoke genResult on one thread to fill the array created previously.

7. Invoke filterParallel on the ideal number of threads to erase the counter examples
found from the instance set in the GPU.

8. Use the array with counter examples indices, and filter all the counter examples in
the CPU to obtain a counter examples instance set.

9. Free the memory not needed anymore on the GPU.

The filtering process is summarized in Fig. 4.13.

Transform

Parallel Search of
Counter Examples

Counter Examples
Reduction

Filtering Counter
Examples

J48 Weka
Classifier

Counter
examples

Decision Tree for GPU

Counter Examples
Indexes

G
PU

C
PU

Add Examples to
the Window

Figure 4.13.: Counter examples searching executed at each Windowing iteration.

Note that the search process on the GPU only finds index values, the actual filtering
is done on the CPU. This design choice was made to reduce data transmission between
the CPU and the GPU, and thus improve performance for large datasets.

Parallel Counter GPU strategy

This strategy only implements the discussed GPU search for counter examples improve-
ment. This strategy was introduced in [48]. Following the JaCa-DDM model, the pro-
posed strategy has the following components:

• Ags = {contactPerson,worker, roundController}, where:

– contactPerson controls the process and induces the learned model.

– worker gathers counter examples in each distributed node.

– roundController evaluates the termination criterion.

• Arts = {Classifier, InstancesBase,Evaluator}, where:

65

– Classifier. It is a Weka J48 classifier, extended with GPU capabilities. It is
used for inducing decision trees.

– InstancesBase. It is a Weka instances base used to store and manipulate
training examples. It is also extended with GPU capabilities.

– Evaluator. It used to compute the accuracy of a given model, with a set of
reserved training examples.

• Params include:

– Prunning : Bool defines if post pruning is to be used.

– WindowInitPerc : Double defines the size of the initial window, as a per-
centage of the available training examples.

– StopTestSetPerc : Double defines the size of the validation set used for com-
puting the termination criterion, as a percentage of the available training
examples.

– AccuracyThr : Double defines a threshold of minimum acceptable accuracy
change between two consecutive rounds. Used by the termination criterion.

– MaxRounds : Int defines the maximum number of rounds of the process. It
subsumes the termination criterion.

The resulting workflow for one iteration of the process is shown in Fig. 4.14.

Figure 4.14.: Parallel Counter GPU strategy sequence diagram.

The agent contactPerson 1 builds a decision tree using Classifier 1 with a subset of
the available training examples, i.e., the initial window, and sends the resulting model to
the instances base artifacts of each worker. Once this is done, contactPerson 1 asks the
workers to search for counter examples and send them to the Classifier 1 artifact. This
searching process is GPU optimized as described before. Once the counter examples are
collected, each worker agent sends them to the classifier artifact, in order to enhance
the current decision tree with a new induction over the extended window. The process
iterates until the termination criterion is met: determining, for a pair of rounds, if the
obtained accuracy computed over a validation set, is better enough in the second round.

66

Parallel Counter GPU Extra strategy

The extra in the proposed strategy is due to the control in the number of counter
examples aggregated to the window, additional to the GPU search for counter examples
previously proposed as Parallel Counter GPU [48]. This strategy was introduced in [49].
Following the JaCa-DDM model, the proposed strategy has the following components:

• Ags = {contactPerson,worker, roundController}, where:

– contactPerson controls the process and induces the learned model.

– worker gathers counter examples in each distributed node.

– roundController evaluates the termination criterion.

• Arts = {Classifier, InstancesBase,Evaluator}, where:

– Classifier. It is a Weka J48 classifier, extended with GPU capabilities. It is
used for inducing decision trees.

– InstancesBase. It is a Weka instances base used to store and manipulate
training examples. It is also extended with GPU capabilities.

– Evaluator. It used to compute the accuracy of a given model, with a set of
reserved training examples.

• Params include:

– Prunning : Bool defines if post pruning is to be used.

– WindowInitPerc : Double defines the size of the initial window, as a per-
centage of the available training examples.

– StopTestSetPerc : Double defines the size of the validation set used for com-
puting the termination criterion, as a percentage of the available training
examples.

– AccuracyThr : Double defines a threshold of minimum acceptable accuracy
change between two consecutive rounds. Used by the termination criterion.

– MaxRounds : Int defines the maximum number of rounds of the process. It
subsumes the termination criterion.

– µ : Double defines the initial percentage of counter examples to be collected
per leaf, as described before.

– ∆ : Double defines an increment percentage for µ applied at each iteration,
as described before.

– γ : Int defines the minimum number of counter examples needed in a leaf to
apply filtering, as describe before.

The workflow is the same as in the Parallel Counter GPU strategy.

67

4.5. Learning strategies summary

In this section, a summary of the presented learning strategies is addressed, this summary
is in the following characteristics:

1. Is a strategy that can be adopted in distributed settings?

2. Is a strategy that shares training instances or models?. Sharing training instances
may have an impact in sensible applications where data privacy is required.

3. Is a strategy that reduces the number of training instances for learning?

4. Is a strategy that can deal with large datasets?

5. Is a strategy that uses online-learning models such as VFDT?, this implicitly allows
to share models instead of only training instances.

6. Which is its best quality?, the best quality may be good accuracy, traffic reduction,
reduced training instances used for learning, or fast convergence.

7. Following the previous question, Which is its worst quality?.

Table 4.1 shows a summary of characteristics from 1 to 4, and table 4.1 a summary of
characteristics from 5 to 7. The summary was done considering each learning strategy
description and also taking into account obtained results from section 6.2, and section 7.2,
where aspects such as speed of convergence, generated network traffic, accuracy, and
number of training instances used where measured. Note that the characteristics are
only assessed considering the strategy by itself, not as related with the others.

Table 4.1.: Learning strategies summary in regard of distributed, sharing type, and reduction of
instances used. A 3means that the strategy complies with the characteristic while a
7means it does not.

Strategy Distributed Sharing type Less instances Large datasets
Centralized J48 7 None 7 7

Centralized VFDT 7 None 7 3
Centralized Bagging 7 None 7 7

Centralizing J48 3 Instances 7 7
Centralizing VFDT 3 Instances 7 7

Round 3 Models 7 3
Distributed Bagging 3 Models 7 3

Distributed Random Forest 3 Models 7 3
Counter J48 3 Instances 3 7

Counter VFDT 3 Instances 3 3
Round Counter 3 Models 3 3

Parallel Round Counter 3 Models 3 3
Parallel Counter GPU 3 Instances 3 3

Parallel Counter GPU extra 3 Instances 3 3

68

Table 4.2.: Learning strategies summary in regard of large datasets, online model, best
quality, and worst quality. A 3means that the strategy complies with the
characteristic while a 7means it does not.

Strategy Online model Best quality Worst quality

Centralized J48 7 Accuracy Speed
Centralized VFDT 3 Speed Accuracy

Centralized Bagging 7 Accuracy Speed
Centralizing J48 7 Accuracy Traffic

Centralizing VFDT 3 Speed Traffic
Round 3 Traffic Accuracy

Distributed Bagging 7 Accuracy Traffic
Distributed Random Forest 7 Speed Accuracy

Counter J48 7 Instances used Speed
Counter VFDT 3 Speed Accuracy
Round Counter 3 Instances used Speed

Parallel Round Counter 3 Instances used Traffic
Parallel Counter GPU 7 Accuracy Speed

Parallel Counter GPU extra 7 Instances used Accuracy

The tables are just a brief reference of each learning strategy, the actual behaviour
of the strategy may vary depending on the dataset. A more in depth analysis of each
learning strategy for actual cases is presented in the next part.

69

5. Validation and analysis methods

In this chapter, related methods used in our experiments and result analysis are ad-
dressed.

First, to know if a given classification method, in this context learning strategy, yields
good results, it is necessary to test it in different scenarios, using different criteria (ac-
curacy, time of convergence, etc.), and having a proper validation scheme. Traditional
schemes of validation use a common dataset, which it is split in training and testing
sets. The training set is used to train a model, and test set is used to test it, obtaining
different values for the different criteria at the end. A well established validation schema
is cross validation [45], which it is introduced first in this chapter.

Second, in our experimental results, we obtain an accuracy result for each tested
learning strategy against each tested dataset, every strategy using the same data samples.
It is desirable to employ an statistical hypothesis test, to see if there is a significant
differences between the results of the strategies. As the accuracy results obtained may
vary, we adopt a non-parametric test, in order to deal with results that do not follow
a normal distribution. To this end, the Wilcoxon signed-rank test is introduced in the
second part of this chapter.

Finally, as some of the results obtained include various strategies and various datasets,
it becomes difficult to interpreter and visualize them, and thus a meta-analysis approach
was adopted in the form of forest plots, to better discuss yielded results.

5.1. Cross validation

Cross validation has its origins in the hold-out method. Hold-out consist on the following
schema: take a labeled dataset and split it in two parts, one for training and the other
for testing. The induction of the learning model uses only the training set, while testing
consists on using the test set and see if the learning model predict its instances correctly,
i.e.; the predicted label is the same as the actual class label.

From the previous scheme, it can be deducted that it is always better to have a lot
of data, this way, induced models will approach more closely to the real problem that
the dataset describes, and there will be the possibility to conduct more tests, giving
trustworthy results. Unfortunately, it is no always the case that a lot of data is available
for training the model. Usually, hold-out uses tow thirds of the available data for training,
while the other third is used for testing. With few data it is more probable that the data
is not representative. To mitigate this problem, it is recommended that the proportion
of class values in the training and testing set be similar. This process is known as
stratification [45].

70

A way to mitigate any data bias created by the sampling of the training and testing
set in the hold-out method, is to repeat the process, training and testing with different
random data samples. Each iteration a certain proportion of the data, possibly stratified,
is chosen for training, and the rest for testing. The accuracy error estimation for the
different iteration is averaged to generate a global accuracy error. This method is known
as repeated hold-out [45].

An small variation of repeated hold-out form the basis to cross validation [45]. In
cross validation it is possible to decide the number of partitions (folds) that the data
will have. For example, for a 4-fold cross validation, the data is divided in four equally
sized parts, one of the folds is used for testing while the rest for training, this process
is repeated four times, so each fold is chose for testing one time per iteration. At the
end, the classification accuracy error is averaged to obtain a global error and standard
deviation. Table 5.1 shows the previous example graphically.

Table 5.1.: 4-fold cross validation example.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Test Train Train Train

Train Test Train Train

Train Train Test Train

Train Train Train Test

Usually, a 10-fold stratified cross validation is used to estimate the accuracy error of a
learning model. The 10 folds are recommended due a series of experiments that demon-
strate that this number is adequate[45], but it is not a restriction [91]. To obtain a better
accuracy error estimation, stratified cross validation can be repeated, ten repetitions is
recommended to have a good enough statistical coverage.

5.2. Wilcoxon signed-rank test

The Wilcoxon signed-rank test [90] is a non-parametric, i.e.; it does not assumes a normal
distribution, statistical hypothesis test used more commonly to compare two matched
samples (but it can also be used with repeated measurements on a single sample), to
determine if there is a significant difference between their mean rank. It can be used
as an alternative to the parametric method Paired t-test, when a normality assumption
has failed [65]. In what follows, the two samples version of the Wilcoxon signed-rank
test for a small sample of data is explained, this explanation is an adaptation from [66].
Only the version for small samples is considered as the one for large samples converges
to a normal distribution, and it was not used in this work.

Let (Xi, Yi) be the ith pair in a paired random sample of continuous values of size n
drawn from population X and Y with unknown median M1 and M2 respectively. Interest
may be in testing that the unknown population medians are equal, that is M1 = M2

71

or that one population median is equal to at least some multiple of other population
median, that is M1 = cM2+k, where c (c > 0) and k are real numbers versus appropriate
two-sided or one sided alternative hypotheses. First, we find the difference between the
paired observations di = xi–cyi–k for i = 1, 2, ..., n. . We then take the absolute values
of these differences and rank them either from the smallest to the largest or from the
largest to the smallest, always taking note of the ranks of the absolute values with positive
differences and those with negative differences. The requirement that the populations
from which the samples are drawn are continuous makes it possible to state, at least
theoretically, that the probability of obtaining zero differences or tied absolute values of
the differences is zero. Now, let r(|di|) be the rank assigned to |di|, the absolute value
of the ith difference di; for i = 1, 2, ..., n.

Let Zi =

{
1, if di > 0
0, if di < 0

(5.1)

The test static T+ is the sum of the ranks of the absolute values with positive differ-
ences:

T+ =
n∑

i=1

Zir(|di|) (5.2)

In a Wilcoxon signed-rank test, the null hypothesis H0 states that the difference
between the pairs of both samples follows a symmetric distribution around zero. T+ can
be compared with a critical value from a reference table T+

critical, based on the number
of samples and a significance evidence, a significance of α = 0.05 is usually adopted. In
a two sided test, the null hypothesis H0, is rejected if |T+| > T+

critical.
In the context of this work, when comparing the results of two learning strategies for

the same dataset, the rejection of the null hypothesis H0 means that there is a significant
difference between strategies, meaning that one of them is better or worst than the other.

5.3. Forest plots

Forest plots is a kind of meta-analysis, which it is a method for statistically combine the
results of various studies that are included in a systematic review, to come to a conclusion
about their overall effects [19]. In simple terms, a meta-analysis is the analysis of an
analysis, used to summarize results.

A forest plot provides a simple visual representation of the amount of variation between
the results of a group of studies, as well as an estimate of the overall result of all the
studies together [27] . In a forest plot, the results of component studies, usually a mean
or median, are shown as squares centred on the point estimate of the result of each
study [46]. A horizontal line runs through the square to show its confidence interval,
usually a tow tailed 95% confidence interval. The overall estimate from the meta-analysis
and its confidence interval are put at the bottom, represented as a diamond. The centre

72

Figure 5.1.: Example of a forest plot. Percentage of instances used for training by various
strategies.

of the diamond represents the pooled point estimate, and its horizontal tips represent
the confidence interval. Also, as confidence intervals are depicted for each study, if two
studies do not intersect horizontally, i.e.; their confidence interval lines do not share any
x-axis value, it can be concluded that there is a significant difference between them.

As an example, figure 5.1 shows a forest plot, taken from section 6.3, which analyses
the mean of the percentage of instances used for training for a group of strategies given
a set of different datasets (18 for this example), with a confidence level of 95%, and
normalized on a scale 0 − 1, which maps to the percentage of training examples used,
i.e; 1 means 100%.

The figure shows, for example, that the Centralized J48 strategy always uses 100%
of the training examples with no variation, while Counter J48 uses an average of 20%
with a considerable variation. As the results of Counter J48 do not intersect horizontally
with Counter J48, it can be concluded that Counter J48 has a significant reduction of
instances used for training in comparison with Centralized J48; but the same does not
apply when comparing Counter J48 against Parallel Round Counter. The summary at
the end shows that all methods average to about 75% of training examples used, with
a considerable variation, which it is not a surprise since various strategies always used
100% of the training instances, while others have a considerable reduction. Another
thing that can be concluded is, for examples, that the Parallel Round Counter strategy
is more stable than Counter VDFT as their variation is lower.

73

Part II.

Experiments

74

In order to test JaCa-DDM, two sets of experiments were created:

• General experiments: to show, as a proof of concept, how the JaCa-DDM model
can be used to implement and test a wide variety of learning strategies. A first
group of strategies exploit centralized approaches with strictly benchmark pur-
poses. The second group of strategies addresses centralizing approaches. A third
group explores meta-learning. Finally, a fourth group of strategies, exploits Win-
dowing [70], a technique based on building an initial model with some examples,
and then enhancing it by reviewing available counter examples. We study the
suitability of such strategies in a distributed environment, based on the observa-
tion that Windowing reduces the number of training examples used for learning,
potentially reducing data communication.

• GPU and large datasets: JaCa-DDM is tested for large and distributed datasets,
in particular, using the window-based GPU strategies described in section 4.4.4.
Two experimental settings are used to evaluate the strategies, comparing them with
the centralized use of the inductive algorithm, and JaCa-DDM strategies based on
VFDT, Bagging, and Random Forest. The first setting uses some datasets from
well known repositories; the second one is a pattern recognition case study, based
on pixel-based image segmentation for the identification of precancerous cervical
lesions on colposcopy images.

75

6. General experiments

6.1. Methodology

In order to evaluate JaCa-DDM strategies, a series of experiments were designed to
measure the learned model accuracy; the number of training examples used to build it;
the overall process time in seconds; and the traffic of data in megabytes. Some datasets
from the UCI [47] and the MOA [11] repositories were selected, varying in the number
of instances, attributes, and values for the class. Some of them (covtypeNorm, poker,
imdb-D) have more that 100K training instances, to explore scalability while still doing
comparisons with the centralized approaches. Table 6.1 describes the selected datasets.

Table 6.1.: Datasets used to explore generalization.

DS Dataset Instances Attributes Classes

1 adult 48842 15 2
2 australian 690 15 2
3 breast 683 10 2
4 credit-g 1000 21 2
5 covtypeNorm 581012 55 7
6 diabetes 768 9 2
7 ecoli 336 8 8
8 german 1000 21 2
9 hypothyroid 3772 30 4

10 imdb-D 120919 1002 2
11 kr-vs-kp 3196 37 2
12 letter 20000 17 26
13 mushroom 8124 23 2
14 poker 829201 11 10
15 segment 2310 20 7
16 sick 3772 30 2
17 splice 3190 61 3
18 waveform-5000 5000 41 3

All the strategies were evaluated using a ten-fold stratified cross-validation, as pre-
sented in section 5.1, with two repetitions over the 18 datasets. Traffic is measured
using tcpdump though a TrafficMonitor artifact. The experiments ran in a cluster of 8
computers (node0, . . . , node7), connected through Gigabit Ethernet at 1Gbps of speed,
each one with the following configuration:

76

• Two Xeon processors at 2.00 GHz with eight cores, and two threads each (32
simultaneous threads).

• 32 GB of RAM

The parameters of each JaCa-DDM strategy are shown in Table 6.2.

Table 6.2.: Experimental parameters. When J48 is used, prunning is adopted.

Strategy Parameter Value

Centralized Classifier J48
Prunning True
Classifier VFDT

Centralized Bagging Threads 32
NumberOfModels 32
ClassifierType J48
ClassifierParams Prunning on

Centralizing Classifier J48
Prunning True
Classifier VFDT

Round None -
Distributed Bagging ThreadsPerNode 32

ModelsPerNode 32
ClassifierType J48
ClassifierParams Prunning on

Counter Classifier J48
Prunning True
Classifier VFDT
InitPercentage 0.25
ChangeStep 0.35
TestPercentage 0.25

Round Counter Classifier VFDT
InitPercentage 0.25
ChangeStep 0.35
TestPercentage 0.25

Parallel Round Counter Classifier VFDT
InitPercentage 0.25
ChangeStep 0.35
TestPercentage 0.25

6.2. Results

Table 6.3 shows the results for all the datasets. The column DS refers to the indexes for
the datasets in Table 6.1. Displayed values are the average of 20 runs (two repetitions

77

of a ten fold stratified cross-validation). Time is measured in seconds and traffic in
megabytes. Remember that the strategies round, round counter, and parallel round
counter use the VFDT learning algorithm.

Table 6.3.: General experiments results. Bold numbers represent the best value for each category
DS Strategy Accuracy Used instances Time Traffic
1 Centralized J48 86.106 ± 0.320 43958 ± 0 2.271 ± 0.149 0 ± 0
1 Centralized VFDT 84.455 ± 0.703 43958 ± 0 0.399 ± 0.182 0 ± 0
1 Centralized Bagging J48 86.167 ± 0.460 43958 ± 0 6.934 ± 0.400 0 ± 0
1 Centralizing J48 86.055 ± 0.290 43958 ± 0 2.415 ± 0.196 11.576 ± 0.197
1 Centralizing VFDT 84.663 ± 0.697 43958 ± 0 0.681 ± 0.391 11.631 ± 0.089
1 Round 84.317 ± 0.692 43958 ± 0 1.098 ± 0.762 2.307 ± 0.360
1 Distributed Bagging J48 86.318 ± 0.487 43958 ± 0 1.379 ± 0.365 47.573 ± 0.737
1 Counter J48 85.988 ± 0.927 14291 ± 629 23.431 ± 8.803 12.046 ± 2.895
1 Counter VFDT 83.887 ± 1.919 20801 ± 2175 2.509 ± 1.307 13.403 ± 3.436
1 Round Counter 83.580 ± 2.003 13280 ± 891 15.902 ± 5.153 25.248 ± 4.760
1 Parallel Round Counter 83.215 ± 2.990 7052 ± 799 9.848 ± 3.317 33.561 ± 9.857
2 Centralized J48 85.362 ± 4.973 621 ± 0 0.054 ± 0.034 0 ± 0
2 Centralized VFDT 85.797 ± 3.808 621 ± 0 0.064 ± 0.044 0 ± 0
2 Centralized Bagging J48 86.521 ± 3.553 621 ± 0 0.121 ± 0.143 0 ± 0
2 Centralizing J48 85.246 ± 3.720 621 ± 0 0.415 ± 0.338 0.542 ± 0.063
2 Centralizing VFDT 85.217 ± 4.692 621 ± 0 0.346 ± 0.284 0.532 ± 0.049
2 Round 86.376 ± 2.676 621 ± 0 0.703 ± 0.373 0.682 ± 0.067
2 Distributed Bagging J48 86.449 ± 4.079 621 ± 0 0.439 ± 0.277 1.367 ± 0.074
2 Counter J48 86.159 ± 3.686 219 ± 16 1.849 ± 0.939 1.923 ± 0.544
2 Counter VFDT 87.101 ± 3.788 208 ± 16 1.301 ± 0.676 1.431 ± 0.314
2 Round Counter 86.594 ± 3.451 165 ± 11 1.724 ± 0.682 1.803 ± 0.408
2 Parallel Round Counter 85.797 ± 3.140 114 ± 9 2.143 ± 0.728 3.480 ± 0.774
3 Centralized J48 95.388 ± 2.340 615 ± 0 0.046 ± 0.026 0 ± 0
3 Centralized VFDT 97.361 ± 2.268 615 ± 0 0.081 ± 0.118 0 ± 0
3 Centralized Bagging J48 96.121 ± 1.909 615 ± 0 0.078 ± 0.064 0 ± 0
3 Centralizing J48 95.689 ± 2.685 615 ± 0 0.413 ± 0.315 0.492 ± 0.073
3 Centralizing VFDT 97.441 ± 1.482 615 ± 0 0.253 ± 0.193 0.489 ± 0.065
3 Round 97.441 ± 1.482 615 ± 0 0.755 ± 0.455 0.676 ± 0.075
3 Distributed Bagging J48 96.777 ± 2.103 615 ± 0 0.362 ± 0.224 1.044 ± 0.070
3 Counter J48 94.881 ± 3.193 110 ± 15 1.576 ± 0.781 1.542 ± 0.601
3 Counter VFDT 97.149 ± 1.915 78 ± 24 1.236 ± 0.562 1.141 ± 0.194
3 Round Counter 96.640 ± 2.213 39 ± 4 1.463 ± 0.553 1.326 ± 0.147
3 Parallel Round Counter 97.223 ± 1.821 38 ± 3 1.979 ± 0.965 2.516 ± 0.547
4 Centralized J48 71.150 ± 3.660 900 ± 0 0.071 ± 0.050 0 ± 0
4 Centralized VFDT 74.900 ± 4.435 900 ± 0 0.069 ± 0.051 0 ± 0
4 Centralized Bagging J48 74.900 ± 3.093 900 ± 0 0.126 ± 0.170 0 ± 0
4 Centralizing J48 70.900 ± 3.024 900 ± 0 0.343 ± 0.273 0.710 ± 0.072
4 Centralizing VFDT 75.100 ± 4.037 900 ± 0 0.455 ± 0.360 0.717 ± 0.064
4 Round 75.100 ± 4.037 900 ± 0 0.665 ± 0.534 0.733 ± 0.061
4 Distributed Bagging J48 73.050 ± 2.928 900 ± 0 0.456 ± 0.343 2.456 ± 0.075
4 Counter J48 71.000 ± 3.260 571 ± 41 2.648 ± 1.228 3.753 ± 1.478
4 Counter VFDT 72.700 ± 5.611 534 ± 30 1.891 ± 1.006 2.348 ± 0.636
4 Round Counter 73.750 ± 4.632 428 ± 33 2.148 ± 1.111 2.673 ± 0.528
4 Parallel Round Counter 69.850 ± 3.828 296 ± 35 2.669 ± 1.250 4.358 ± 1.407
5 Centralized J48 94.661 ± 0.127 522911 ± 0 940.861 ± 78.644 0 ± 0
5 Centralized VFDT 77.047 ± 0.309 522911 ± 0 9.536 ± 0.447 0 ± 0
5 Centralized Bagging J48 96.719 ± 0.089 522911 ± 0 1892.998 ± 414.823 0 ± 0
5 Centralizing J48 94.641 ± 0.106 522911 ± 0 750.028 ± 100.995 424.876 ± 5.222
5 Centralizing VFDT 76.684 ± 0.265 522911 ± 0 9.546 ± 0.513 416.274 ± 0.327
5 Round 76.956 ± 0.325 522911 ± 0 8.345 ± 2.011 15.947 ± 1.160
5 Distributed Bagging J48 92.084 ± 0.084 522911 ± 0 53.855 ± 3.378 828.699 ± 2.533
5 Counter J48 92.715 ± 0.512 166136 ± 6400 3763.525 ± 794.745 486.69 ± 65.13
5 Counter VFDT 77.642 ± 0.445 329417 ± 7791 18.285 ± 2.014 329.055 ± 18.637
5 Round Counter 75.141 ± 0.844 250878 ± 6408 180.884 ± 18.544 307.412 ± 16.301
5 Parallel Round Counter 73.125 ± 1.640 172687 ± 5311 119.792 ± 14.532 575.479 ± 55.166
6 Centralized J48 74.085 ± 3.872 691 ± 0 0.080 ± 0.117 0 ± 0
6 Centralized VFDT 75.711 ± 5.596 691 ± 0 0.057 ± 0.044 0 ± 0
6 Centralized Bagging J48 75.260 ± 5.071 691 ± 0 0.138 ± 0.197 0 ± 0
6 Centralizing J48 74.416 ± 6.073 691 ± 0 0.276 ± 0.215 0.468 ± 0.060
6 Centralizing VFDT 75.588 ± 4.982 691 ± 0 0.333 ± 0.293 0.477 ± 0.064
6 Round 75.588 ± 4.982 691 ± 0 0.632 ± 0.416 0.644 ± 0.052
6 Distributed Bagging J48 77.025 ± 5.716 691 ± 0 0.326 ± 0.255 1.614 ± 0.066
6 Counter J48 74.284 ± 5.385 421 ± 35 2.023 ± 1.065 1.799 ± 0.642
6 Counter VFDT 76.100 ± 4.876 375 ± 24 1.801 ± 0.846 1.617 ± 0.402
6 Round Counter 75.787 ± 5.180 303 ± 18 2.110 ± 0.874 2.086 ± 0.426
6 Parallel Round Counter 69.851 ± 13.179 217 ± 18 2.398 ± 1.473 3.567 ± 0.929
7 Centralized J48 83.614 ± 6.391 302 ± 1 0.069 ± 0.112 0 ± 0
7 Centralized VFDT 85.276 ± 3.900 302 ± 1 0.053 ± 0.038 0 ± 0
7 Centralized Bagging J48 85.574 ± 5.203 302 ± 1 0.087 ± 0.102 0 ± 0
7 Centralizing J48 82.290 ± 4.943 302 ± 1 0.328 ± 0.240 0.394 ± 0.055
7 Centralizing VFDT 84.830 ± 5.727 302 ± 1 0.407 ± 0.352 0.400 ± 0.063
7 Round 84.830 ± 5.727 302 ± 1 0.564 ± 0.329 0.655 ± 0.063

Continues on next page

78

Table 6.3 – continuation from previous page
DS Strategy Accuracy Used instances Time Traffic
7 Distributed Bagging J48 81.114 ± 6.284 302 ± 1 0.448 ± 0.311 1.699 ± 0.06
7 Counter J48 81.568 ± 4.604 129 ± 8 1.566 ± 0.708 1.522 ± 0.580
7 Counter VFDT 82.745 ± 6.713 110 ± 9 1.389 ± 0.962 1.235 ± 0.210
7 Round Counter 76.029 ± 19.124 102 ± 9 1.561 ± 0.814 1.565 ± 0.240
7 Parallel Round Counter 76.934 ± 19.264 83 ± 15 1.804 ± 0.948 2.454 ± 0.791
8 Centralized J48 72.850 ± 4.283 900 ± 0 0.086 ± 0.114 0 ± 0
8 Centralized VFDT 75.150 ± 3.166 900 ± 0 0.065 ± 0.048 0 ± 0
8 Centralized Bagging J48 73.500 ± 3.576 900 ± 0 0.130 ± 0.156 0 ± 0
8 Centralizing J48 71.750 ± 3.385 900 ± 0 0.344 ± 0.238 0.705 ± 0.056
8 Centralizing VFDT 75.000 ± 3.713 900 ± 0 0.417 ± 0.334 0.709 ± 0.064
8 Round 75.000 ± 3.713 900 ± 0 0.622 ± 0.388 0.720 ± 0.060
8 Distributed Bagging J48 72.150 ± 3.297 900 ± 0 0.448 ± 0.241 2.613 ± 0.083
8 Counter J48 70.550 ± 4.570 557 ± 45 2.176 ± 1.582 3.205 ± 1.260
8 Counter VFDT 72.650 ± 3.297 536 ± 18 1.754 ± 0.674 2.277 ± 0.582
8 Round Counter 72.100 ± 4.506 412 ± 46 2.130 ± 0.987 2.361 ± 0.475
8 Parallel Round Counter 71.350 ± 2.580 299 ± 28 2.839 ± 1.859 4.718 ± 2.670
9 Centralized J48 99.562 ± 0.301 3395 ± 0 0.168 ± 0.248 0 ± 0
9 Centralized VFDT 96.647 ± 1.573 3395 ± 0 0.109 ± 0.073 0 ± 0
9 Centralized Bagging J48 99.522 ± 0.305 3395 ± 0 0.156 ± 0.144 0 ± 0
9 Centralizing J48 99.522 ± 0.350 3395 ± 0 0.287 ± 0.158 1.968 ± 0.070
9 Centralizing VFDT 95.558 ± 1.727 3395 ± 0 0.449 ± 0.210 1.972 ± 0.070
9 Round 96.288 ± 1.800 3395 ± 0 0.712 ± 0.393 0.825 ± 0.108
9 Distributed Bagging J48 98.820 ± 0.616 3395 ± 0 0.350 ± 0.268 1.561 ± 0.07
9 Counter J48 99.483 ± 0.326 148 ± 9 1.548 ± 0.982 1.379 ± 0.212
9 Counter VFDT 92.827 ± 1.076 608 ± 28 1.852 ± 1.192 2.386 ± 0.523
9 Round Counter 92.046 ± 1.220 430 ± 23 2.478 ± 2.058 2.458 ± 0.570
9 Parallel Round Counter 91.555 ± 2.145 306 ± 29 3.313 ± 1.430 4.913 ± 1.755
10 Centralized J48 63.072 ± 0.425 108827 ± 0 13735.375 ± 347.085 0 ± 0
10 Centralized VFDT 70.243 ± 0.187 108827 ± 0 44.612 ± 0.632 0 ± 0
10 Centralized Bagging J48 Unfinished
10 Centralizing J48 63.108 ± 0.307 108827 ± 0 14114.590 ± 402.841 224.400 ± 87.603
10 Centralizing VFDT 70.191 ± 0.365 108827 ± 0 44.539 ± 0.796 53.816 ± 0.546
10 Round 70.138 ± 0.220 108827 ± 0 49.098 ± 3.123 99.215 ± 11.550
10 Distributed Bagging J48 70.542 ± 0.097 108827 ± 0 750.707 ± 5.406 220.104 ± 4.215
10 Counter J48 Unfinished
10 Counter VFDT 70.089 ± 0.172 93317 ± 1518 60.648 ± 2.356 405.965 ± 11.027
10 Round Counter 69.803 ± 1.385 61944 ± 656 165.997 ± 7.577 546.158 ± 145.299
10 Parallel Round Counter 66.997 ± 6.187 41688 ± 2941 116.698 ± 14.055 887.564 ± 260.205
11 Centralized J48 99.405 ± 0.496 2876 ± 1 0.088 ± 0.042 0 ± 0
11 Centralized VFDT 93.507 ± 1.713 2876 ± 1 0.099 ± 0.070 0 ± 0
11 Centralized Bagging J48 99.420 ± 0.479 2876 ± 1 0.143 ± 0.124 0 ± 0
11 Centralizing J48 99.327 ± 0.619 2876 ± 1 0.327 ± 0.203 2.023 ± 0.070
11 Centralizing VFDT 93.694 ± 1.723 2876 ± 1 0.348 ± 0.279 2.024 ± 0.064
11 Round 93.632 ± 1.208 2876 ± 1 0.693 ± 0.405 0.823 ± 0.070
11 Distributed Bagging J48 96.918 ± 1.174 2876 ± 1 0.475 ± 0.249 2.37 ± 0.108
11 Counter J48 99.327 ± 0.478 237 ± 21 1.363 ± 0.754 1.712 ± 0.369
11 Counter VFDT 96.417 ± 1.313 514 ± 36 1.594 ± 0.785 2.266 ± 0.540
11 Round Counter 96.526 ± 1.121 389 ± 27 2.530 ± 1.264 2.772 ± 0.693
11 Parallel Round Counter 95.337 ± 1.551 294 ± 20 2.927 ± 0.987 5.151 ± 1.350
12 Centralized J48 87.979 ± 0.535 18000 ± 0 1.421 ± 0.127 0 ± 0
12 Centralized VFDT 71.030 ± 2.090 18000 ± 0 0.747 ± 0.115 0 ± 0
12 Centralized Bagging J48 93.727 ± 0.488 18000 ± 0 2.415 ± 0.194 0 ± 0
12 Centralizing J48 87.932 ± 0.731 18000 ± 0 1.559 ± 0.159 5.456 ± 0.131
12 Centralizing VFDT 70.317 ± 4.588 18000 ± 0 1.073 ± 0.314 5.451 ± 0.075
12 Round 69.890 ± 5.482 18000 ± 0 1.538 ± 0.677 1.763 ± 0.106
12 Distributed Bagging J48 89.175 ± 0.559 18000 ± 0 1.953 ± 0.350 152.690 ± 0.944
12 Counter J48 87.832 ± 1.159 7735 ± 465 29.168 ± 13.589 129.241 ± 55.15
12 Counter VFDT 74.064 ± 1.614 9443 ± 703 4.196 ± 1.129 8.287 ± 1.917
12 Round Counter 73.847 ± 1.700 8410 ± 344 14.855 ± 3.356 16.363 ± 2.259
12 Parallel Round Counter 71.847 ± 1.394 6795 ± 100 10.074 ± 1.994 27.905 ± 2.237
13 Centralized J48 100.00 ± 0 7312 ± 1 0.111 ± 0.119 0 ± 0
13 Centralized VFDT 99.593 ± 0.327 7312 ± 1 0.128 ± 0.097 0 ± 0
13 Centralized Bagging J48 100.00 ± 0 7312 ± 1 0.176 ± 0.157 0 ± 0
13 Centralizing J48 100.00 ± 0 7312 ± 1 0.384 ± 0.298 3.065 ± 0.065
13 Centralizing VFDT 99.716 ± 0.301 7312 ± 1 0.480 ± 0.327 3.070 ± 0.056
13 Round 99.741 ± 0.225 7312 ± 1 0.849 ± 0.464 1.173 ± 0.112
13 Distributed Bagging J48 99.833 ± 0.145 7312 ± 1 0.687 ± 0.351 2.259 ± 0.079
13 Counter J48 100.00 ± 0 210 ± 17 1.078 ± 0.619 1.222 ± 0.076
13 Counter VFDT 99.526 ± 0.552 649 ± 207 1.473 ± 0.863 2.045 ± 0.365
13 Round Counter 99.981 ± 0.045 257 ± 5 1.994 ± 1.189 1.999 ± 0.188
13 Parallel Round Counter 99.852 ± 0.297 256 ± 7 1.921 ± 1.114 3.879 ± 1.060
14 Centralized J48 99.788 ± 0.006 746281 ± 0 193.763 ± 20.857 0 ± 0
14 Centralized VFDT 86.497 ± 1.066 746281 ± 0 4.006 ± 0.410 0 ± 0
14 Centralized Bagging J48 99.788 ± 0.004 746281 ± 0 548.682 ± 26.580 0 ± 0
14 Centralizing J48 99.787 ± 0.006 746281 ± 0 166.608 ± 13.771 151.383 ± 0.993
14 Centralizing VFDT 87.277 ± 1.965 746281 ± 0 4.807 ± 0.818 149.717 ± 0.206
14 Round 86.772 ± 2.058 746281 ± 0 4.879 ± 1.786 9.278 ± 0.604
14 Distributed Bagging J48 99.636 ± 0.003 746281 ± 0 28.319 ± 2.621 508.892 ± 7.497
14 Counter J48 99.780 ± 0.015 48830 ± 1852 77.269 ± 11.117 58.384 ± 5.224
14 Counter VFDT 87.817 ± 2.505 364235 ± 32998 11.608 ± 2.281 105.084 ± 8.391
14 Round Counter 79.232 ± 1.302 341137 ± 16683 230.961 ± 30.135 373.218 ± 21.067

Continues on next page

79

Table 6.3 – continuation from previous page
DS Strategy Accuracy Used instances Time Traffic
14 Parallel Round Counter 76.561 ± 1.609 227856 ± 7636 136.943 ± 10.370 709.752 ± 39.394
15 Centralized J48 97.056 ± 0.905 2079 ± 0 0.113 ± 0.060 0 ± 0
15 Centralized VFDT 79.696 ± 2.197 2079 ± 0 0.097 ± 0.062 0 ± 0
15 Centralized Bagging J48 97.424 ± 0.800 2079 ± 0 0.215 ± 0.215 0 ± 0
15 Centralizing J48 97.359 ± 0.919 2079 ± 0 0.454 ± 0.312 1.043 ± 0.061
15 Centralizing VFDT 79.653 ± 1.815 2079 ± 0 0.433 ± 0.268 1.042 ± 0.063
15 Round 79.653 ± 1.815 2079 ± 0 0.651 ± 0.378 0.777 ± 0.086
15 Distributed Bagging J48 93.896 ± 1.655 2079 ± 0 0.435 ± 0.303 3.564 ± 0.125
15 Counter J48 95.909 ± 1.321 364 ± 28 2.000 ± 1.149 2.418 ± 1.069
15 Counter VFDT 83.961 ± 2.164 730 ± 21 1.720 ± 0.690 2.043 ± 0.430
15 Round Counter 84.134 ± 1.778 644 ± 33 2.619 ± 1.256 2.645 ± 0.337
15 Parallel Round Counter 80.562 ± 15.768 489 ± 51 2.600 ± 1.393 4.780 ± 0.916
16 Centralized J48 98.727 ± 0.380 3395 ± 0 0.125 ± 0.070 0 ± 0
16 Centralized VFDT 95.810 ± 1.307 3395 ± 0 0.105 ± 0.084 0 ± 0
16 Centralized Bagging J48 98.873 ± 0.529 3395 ± 0 0.194 ± 0.153 0 ± 0
16 Centralizing J48 98.502 ± 0.511 3395 ± 0 0.338 ± 0.197 1.949 ± 0.047
16 Centralizing VFDT 96.168 ± 1.696 3395 ± 0 0.423 ± 0.285 1.977 ± 0.076
16 Round 95.931 ± 1.464 3395 ± 0 0.700 ± 0.348 0.826 ± 0.114
16 Distributed Bagging J48 98.104 ± 0.614 3395 ± 0 0.376 ± 0.245 1.424 ± 0.061
16 Counter J48 98.621 ± 0.647 270 ± 26 1.993 ± 1.087 2.264 ± 0.579
16 Counter VFDT 93.584 ± 0.909 498 ± 26 1.349 ± 0.684 1.721 ± 0.346
16 Round Counter 93.266 ± 1.766 383 ± 23 2.360 ± 1.711 2.368 ± 0.680
16 Parallel Round Counter 93.305 ± 1.409 298 ± 29 2.731 ± 1.278 3.720 ± 0.914
17 Centralized J48 94.373 ± 1.622 2871 ± 0 0.109 ± 0.052 0 ± 0
17 Centralized VFDT 95.501 ± 1.204 2871 ± 0 0.109 ± 0.062 0 ± 0
17 Centralized Bagging J48 94.608 ± 1.227 2871 ± 0 0.176 ± 0.137 0 ± 0
17 Centralizing J48 93.808 ± 1.459 2871 ± 0 0.376 ± 0.227 3.061 ± 0.059
17 Centralizing VFDT 95.423 ± 0.934 2871 ± 0 0.468 ± 0.344 3.059 ± 0.066
17 Round 95.423 ± 0.934 2871 ± 0 0.637 ± 0.394 1.036 ± 0.081
17 Distributed Bagging J48 90.015 ± 1.714 2871 ± 0 0.524 ± 0.318 7.228 ± 0.17
17 Counter J48 93.746 ± 1.730 824 ± 24 2.703 ± 1.000 6.560 ± 1.695
17 Counter VFDT 94.811 ± 1.029 475 ± 52 1.492 ± 0.882 3.03 ± 0.651
17 Round Counter 95.062 ± 1.061 409 ± 24 2.523 ± 1.375 3.078 ± 0.842
17 Parallel Round Counter 94.420 ± 1.227 338 ± 12 2.994 ± 1.270 6.492 ± 1.675
18 Centralized J48 74.479 ± 2.247 4500 ± 0 0.527 ± 0.141 0 ± 0
18 Centralized VFDT 79.260 ± 2.868 4500 ± 0 0.182 ± 0.087 0 ± 0
18 Centralized Bagging J48 83.310 ± 1.156 4500 ± 0 0.791 ± 0.164 0 ± 0
18 Centralizing J48 75.120 ± 1.990 4500 ± 0 0.657 ± 0.172 3.119 ± 0.087
18 Centralizing VFDT 80.169 ± 1.592 4500 ± 0 0.486 ± 0.349 3.131 ± 0.061
18 Round 78.930 ± 3.238 4500 ± 0 0.783 ± 0.455 0.881 ± 0.073
18 Distributed Bagging J48 84.419 ± 1.292 4500 ± 0 0.605 ± 0.313 6.656 ± 0.067
18 Counter J48 74.450 ± 2.154 3185 ± 425 21.545 ± 12.748 18.442 ± 9.300
18 Counter VFDT 77.919 ± 10.437 1752 ± 79 1.824 ± 0.932 3.069 ± 0.484
18 Round Counter 80.270 ± 2.079 1580 ± 84 3.756 ± 1.694 4.150 ± 0.794
18 Parallel Round Counter 80.739 ± 1.694 853 ± 93 3.882 ± 1.432 6.318 ± 1.287

6.3. Discussion

Results are summarized using forest plots, as presented in section 5.3, with a confidence
level of 95%, and normalized on a scale 0 − 1. With the exception of accuracy (which
normalization is obvious), the normalization is based on ratios, i.e., for each dataset, the
greatest value produced by a strategy is 1 and the rest of the values are proportional.

Figure 6.1 (left) shows the results for accuracy. Without surprise, the centralized and
centralizing strategies (centralized, centralized Bagging, centralizing, and round) always
obtain comparable accuracies for a given learning algorithm. This is due to the fact
that they are using all the available examples in the system, being centralized Bagging
the overall best strategy, in accuracy terms. For the Windowing-based strategies, the
counter strategy produced the best overall accuracy, in much cases comparable with
the corresponding centralized ones. Indeed, there is always a Windowing-based strategy
that can obtain accuracies similar to the centralized ones. For the Bagging strategies
(centralized Bagging, and distributed Bagging), the obtained accuracies are very similar.
We expected to see a wider difference between centralized and distributed Bagging,
considering that in the distributed version the Bagging meta-learners were induced with

80

Figure 6.1.: Results for accuracy (left) and ratio of training examples used (right).
Higher values for accuracy are better, while lower values of training ex-
amples used are better. Summary is the overall value, commonly added in
this kind of plots.

incomplete local data, but the stratified distribution (not necessarily biased) of the data
as well as the many internal models (256 in total) seem to mitigate the problem. The
variability in the accuracy obtained by each strategy is very low (see the detailed results
in the table at the end of this section). Because of this, the confidence interval is so
small, that it is covered by the black boxes in the forest plot. Accuracy variability among
the strategies seems to be due to the learning algorithm used in the strategies. This is
more evident in the multivalued class datasets: covtypeNorm (DS 5) , letter (DS 12),
poker (DS 14), and segment (DS 15), where J48 gets better results than VFDT. For
binary classes, VFDT behaves slightly better than J48. We think that the source of this
problem is that VFDT, although incremental, can not move a node once it is created [60],
when updating the model. An extension addressing this problem, known as CVFDT [41]
will be evaluated in future work.

With respect to the number of training instances used to learn, Figure 6.1 (right) shows
that all Windowing-based strategies achieve an important reduction in the number of
used instances. The parallel round counter strategy seems to obtain the best reduction,
but this is payed with its lower accuracies. The centralized, centralizing, and meta-
learning strategies, use always all the available data in the system, so that there is
no variability for them. Overall, the Windowing-based strategies obtained accuracies
similar to those obtained by the centralized strategies, while reducing significantly the
number of instances used to learn.

The results also suggest a negative correlation between the ratio of training instances
used to obtain a model and its accuracy, independent of the chosen learning algorithm.
This is depicted in Figure 6.2, where the series are strategies and the points are datasets.
Each point has then the accuracy obtained given a strategy; and a ratio of used training
instances (total number of instances/used instances). If a good accuracy can be achieved,
then the percentage of used training instances decreases, and vice versa. Considering all
the data points, the Pearson correlation coefficient [9] between accuracy and percentage

81

of training examples used is −0.8175845 which establishes a negative correlation. The
correlation plot is depicted in figure 6.3. From this observation, a future work, described
in section 9.1, is planned.

60 70 80 90 100

0
20

40
60

80

Accuracy

%
Tr

ai
ni

ng
 e

xa
m

pl
es

 u
se

d ●
●

●

●

●

●

●

●

●

●●

● ●

●●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

Counter J48
Counter VFDT
Round Counter
Parallel Round Counter

Figure 6.2.: Suggested correlation between accuracy and number of examples used. Each
point plotted represents the result for a dataset with the particular strategy.

82

60 70 80 90 100

0
20

40
60

80

Accuracy

%
Tr

ai
ni

ng
 e

xa
m

pl
es

 u
se

d ●
●

●

●

●

●

●

●

●

●●

● ●

●●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

Figure 6.3.: Correlation plot of accuracy and number of examples used, considering all
data points. The Pearson correlation coefficient is −0.8175845.

Regarding time, Figure 6.4 (left) shows that the centralized strategies are faster than
the Windowing-based, and centralizing strategies, as expected, since they do not trans-
mit any data. Although having data transmission, distributed Bagging is comparable
in time terms with its centralized counterpart, since each distributed node uses only
1/8 of the data, the induction processes speedsup for the J48 learning algorithm, this
is more apparent in datasets with a large number of instances: covtypeNorm (DS 5),
imdb-D (DS 10), poker (DS 14). The round strategy, i.e., moving the model instead of
the instances, is a little bit slower than the centralizing strategy. Speed depends also on
the adopted learning algorithm, VFDT is much faster than J48.

Windowing-based strategies are slower in general, but this is more notorious with
small datasets where gathering counter examples does not pay in time. However, observe
(table 6.3) that for a big dataset as poker (DS 14), counter J48 is almost twice faster
than centralized J48. The results for imdb-D (DS 10) seems counterintuitive in this
sense, since counter J48 did not finished its process, but this is due to the number of
attributes of this dataset (1002) and the fact that J48 is not an incremental algorithm,
i.e., it has to build a new tree from scratch, when considering new counter examples.
Also, the Centralized Bagging strategy using J48 did not finished its process for the

83

Figure 6.4.: Results for the ratio of process time (left), and ratio of generated traffic
(right). For time and traffic, lower values are better. Summary is the overall
value, commonly added in this kind of plots.

imdb-D (DS 10) dataset, due to a lack of available memory. Surprisingly, round counter
is slower than counter; and even when, in general, round counter performs slightly better
than parallel round counter, on big datasets (for example, DS 14) the contrary happens.
Counter VFDT has the best overall time of the Windowing-based strategies.

Regarding data transmissions, Figure 6.4 (right), shows that the Windowing-based
strategies transmit more data than the centralizing strategies, despite the fact that
they used considerably fewer examples to learn. After all, the instances are not the
only data transmitted in the strategies. This is clear in the imdb-D (DS 10) dataset,
where the centralizing VFDT traffic is significantly smaller that the centralizing J48 one.
The traffic for round counter is in the majority of cases greater than counter, because
models are shared constantly between nodes as part of the process, and these models
grow bigger as the process progress. Finally, the parallel round counter is the worst
in terms of traffic. As expected, the round strategy reduces the traffic with respect to
the centralizing strategy, but this is not reflected in speed. The distributed Bagging
strategy also has a considerable amount of data transmission, since each of the eight
distributed nodes builds a Bagging meta-classifier consisting of 32 internal models which
are transmitted, with the exception of the centralization node that does not transmits
its models.

For the strictly distributed scenarios, round seems to be the strategy with the best
overall results. Recall, that it consists in moving the model through the available nodes,
and updating it with all the available data. Round maintains an accuracy as good as the
centralized strategy, but reduces time and traffic significantly when compared with the
majority of the other strategies. However, since it is based on VFDT, it has problems
to keep high accuracies when facing multivalued class datasets.

Most of the times, there is a Windowing-based strategy that approximates the accu-
racy of the centralized strategies, but using significantly less training examples. It is
worth noting that more substantial efforts could be done to reduce data transmission on
the Windowing-based strategies, but our primary interest was to validate if such strate-

84

gies could compete in accuracy with centralized approaches while reducing the number
of examples used. We believe that the reduction of training examples can be exploited to
improve the performance of the learning process in terms of time and data transmission.
While the search of counter examples is expensive, this process can be greatly optimized
since it is parallelizable, i.e.; it could be approached through GPU computing, expecting
that at some point the cost of the process is negligible when compared with the cost
of treating with all the data available. The results shed some light regarding how the
Windowing-based strategies could be improved, and gave us valuable information to cre-
ate our GPU-based learning strategies, as presented in section 4.4.4, that optimize time
and data transmission while preserving accuracy. Especially, from the results analysis,
it became apparent that the window size in each iteration could be reduced in order to
speedup the induction process, as explained in section 4.4.4.

85

7. GPU and large datasets

The interest of this chapter is to test large and distributed datasets, in order to asses
how good our proposed Windowing-based approach is in this kind of scenarios. As we
already learned from the experiments of chapter 6, non GPU windowing-based strategies
may not deal properly with large datasets as they take a considerable amount of time
to converge (Counter J48, and Round Counter), or they do not obtain a good accuracy
(Counter VFDT and Parallel Round Counter). For this reason, the GPU windowing-
based strategies, presented in section 4.4.4, were created, taking as a basis Counter
J48, which always obtains a good accuracy, but it is slow due that the Windowing
process is not optimized. In this way, the GPU windowing-based strategies optimize the
Windowing process, emphasizing accuracy and speed, and making them appropriate for
large datasets, as tested in this chapter.

7.1. Methodology

Two experimental settings were adopted for testing the applicability of the GPU strate-
gies, one based on known datasets and another based on a pattern recognition case study:
pixel-based segmentation of images for the detection of possible precancerous cervical
lesions.

All the experiments evaluate and compare the accuracy of the obtained models, as
well as the number of training examples used in the process, the run-time measured in
seconds, the complexity of the models (number of leaves and tree size), and the resulting
confusion matrix. All the experiments were executed on a cluster of three nodes with
the same characteristics:

• Two Xeon processors at 2.40 GHz with four cores, and two threads each.

• 24 GB of RAM.

• One CUDA enabled Nvidia Tesla C2050 GPU with 448 cores and 6 GB of memory.

The Parallel Counter GPU Extra strategy [49] is compared with other strategies with
different purposes. It is compared with: Parallel Counter GPU [48] to evaluate the
effects of the extra filtering of counter examples; Weka Centralized for comparison with
the traditional use of the data mining tool; Centralizing VFDT for comparison with a
full centralization approach based on incremental induction; and Bagging and Random
Forest for comparison with meta-learning approaches. It is worth noting that all the
strategies were implemented using JaCa-DDM.

86

Centralizing VFDT gathers all the training examples scattered in the distributed
nodes; and then induce a decision tree using the VDFT algorithm, as implemented in
MOA [11]. The Bagging strategy is based on J48 pruned models, as provided by Weka.
In each distributed node, 16 models are created in parallel from bootstrap samples of
the local data. The Random Forest strategy runs on the same basis as Bagging, using
log2(|attributes|)+1 as the K value for randomly selecting attributes in each node split.

A Wilcoxon signed rank test, as presented in section 5.2, with a significance evidence
at α = 0.05 and three possible outcomes (Won, Lost, Tie), is adopted to compare the
accuracy of Counter GPU Extra strategy against the considered strategies.

7.1.1. Case study 1: known datasets

Four representative datasets from the UCI repository [47], as adapted by the MOA [11]
and TunedIT [92] projects, were selected:

• airlines. A dataset to predict flight delays from the information of the scheduled
departure.

• covtypeNorm. A dataset containing the forest cover type for 30 x 30 meter cells
obtained from US Forest Service.

• KDDCup99. A dataset to built a predictive model capable of distinguishing be-
tween bad connections, intrusions or attacks, and good normal connections.

• poker-lsn. A dataset containing examples of poker and no poker hands drawn from
a standard deck of 52 cards.

The datasets properties are shown in Table 7.1. Parameters (π) and agent distribution
(δ) are configured as shown in Table 7.2, for all the experiments. A 10-fold stratified
cross validation is adopted, i.e., preserving class value ratios in each partition. The
training examples were stratified and split evenly among the three nodes, in order to
have a fair comparison among the various methods.

Table 7.1.: The properties of the adopted datasets.

DS Dataset #Instances #Attributes #Classes

1 airlines 539383 8 2
2 covtypeNorm 581012 55 7
3 KDDCup99 4898431 42 23
4 poker-lsn 829201 11 10

7.1.2. Case study 2: pixel-based segmentation

Computer Vision (CV) is a discipline which attempts to emulate the perceptual inter-
pretation of images developed by the human eye and brain. CV implies the acquisition

87

Table 7.2.: Strategy configuration.

Parameters (π) Agent distribution (δ)

Pruning = true contactPerson, node 1, 1
WindowInitPerc = 0.15 roundController, node 1, 1
StopTestSetPerc = 0.15 worker, node 1, 1
AccuracyThr = 0.004 worker, node 2, 1
MaxRounds = 10 worker, node 3, 1
µ = 0.15
∆ = 0.15
γ = 10

and analysis of digital images represented as 2D arrays which contain color-spatial fea-
tures that create different complex patterns. In order to create high level representations
from those patterns, machine learning techniques are used. One of the most important
challenges in CV is the segmentation of images with classification purposes. Although
CV has multiple potential applications, the computationally demanding nature of the
state-of-the-art algorithms makes them difficult to apply and ask for more efficient data
analysis schemes.

A pixel-based segmentation problem consists on extracting features from labeled pixels
to create a training dataset, which in turn is used to construct a model to predict the
class of unseen pixels, and in this way achieve image segmentation [87]. As each training
example is a pixel, the training set becomes restrictively big and parallel methods are
necessary.

This case study deals with sequences of colposcopic images presenting possible precan-
cerous cervical lesions [1]. A colposcopy test consists in the visualization of the cervix
through a low power microscope called colposcope. During visualization time, a solu-
tion of acetic acid is spread over the cervix surface in order to induce a coagulation
process on those cells that are in transformation process due to the cancerous lesion.
For the purpose of the case study reported here, a sequence of images was taken during
visualization time, in order to capture the temporal color changes on the tissue.

The image sequences were extracted from 38 women patients, ages ranging from 22
to 35 years old. All of them gave informed written consent.

For each patient a range between 310 and 630 aligned images were obtained. The
difference on the number of images per patient is due to the fact that some patients
where recorded for a longer time than others. A medical expert labeled some of the
pixels from the images of each patient (Fig. 7.1 shows an example). Taking into account
that the images are aligned, a mask for each patient can be drawn, marking six classes:
normal tissue, immature metaplasia, mature metaplasia, ectopy, low grade lesion, and
high grade lesion. From these classes, only the last two represent possible precancerous
lesion. We are only concerned in recognizing two classes: possible precancerous lesion
(+) and the opposite (−), but the six classes are considered in order to exploit class
decomposition to deal with class imbalance [83].

88

time

Figure 7.1.: Example of a sequence of colposcopic images. Black dots represent pixels
labeled by a medical expert.

As shown in Table 7.3, observations are imbalanced, having substantially more possible
precancerous lesion observations (+). Classes are balanced by varying the number of
images from the patients, depending on the number of observations of the class. Less
observed classes needed more images from a patient with observations of that class.
As the minimum number of images in the series is 310, this value is adopted as the
maximum number of images that could be considered for a patient. The minimum
number of observations of a class is 771, multiplying that value by 310 yields to 239010,
which is the maximum number of instances per class that can be obtained in a balanced
set. So the total number of instances is 239010 ∗ 6 = 1434060.

Table 7.3.: The six classes of the case study 2 and the associated number of patients and
observations for each one.

Class #Patients #Observations

Normal tissue (−) 11 4294
Immature metaplasia (−) 7 771
Mature metaplasia (−) 5 1264
Ectopy (−) 2 802
Low grade lesion (+) 26 23897
High grade lesion (+) 3 2908

Observe that this process still results in an imbalance of negative and positive classes.
The resulting imbalance is intended as a mean to mitigate the problem of fewer patients
presenting observations of the negative class, which affects the results when using a
leave-one-out evaluation per patient, as the evaluation for patients with negative obser-
vations tend to draw a significant percentage of negative examples for testing, creating
an important imbalance on the training data, favoring the positive class.

89

Using FIJI [78], 30 numeric attributes were extracted from the pixels of interest, by
applying the following texture filters: Variance, Mean, Minimum, Maximum, and Me-
dian. Each filter used a maximum number of 16 neighbors (maximum sigma parameter
in FIJI), table 7.4 illustrates the characteristics of the dataset.

Table 7.4.: The properties of the case study dataset.

#Instances #Attributes #Classes

1434060 30 6

Results are evaluated using the leave-one-out method, in order to properly assess accu-
racy in this case. The test dataset in each case is extracted from a single patient, which
means that 38 iterations are performed. For each tested strategy, with the exception
of the Centralized one, the training data was stratified and evenly split in the available
nodes. Parallel Counter GPU Extra configuration is shown in Table 7.2.

7.2. Results & discussion

Obtained results for both case studies along with its corresponding discussion is ad-
dressed next.

7.2.1. Case study 1: known datasets

Table 7.5.: Results for the case study 1: known datasets. In Wilcoxon column, the accuracy of
Parallel Counter GPU Extra is compared against each method, a check mark means
win, a cross lose, a - a tie, and ! means that the comparison is not possible.

DS Strategy Accuracy %Instances Time (seconds) Wilcoxon
1 Parallel Counter GPU Extra 65.36 ± 0.25 51.21 ± 0.03 435.04 ± 106.28 !
1 Weka Centralized 66.34 ± 0.11 100.00 ± 0.00 1164.66 ± 211.76 7
1 Parallel Counter GPU 66.26 ± 0.12 94.95 ± 0.01 1810.78 ± 446.47 7
1 Centralizing VFDT 65.24 ± 0.27 100.00 ± 0.00 4.67 ± 0.53 -
1 Bagging 66.45 ± 0.13 100.00 ± 0.00 144.67 ± 4.47 7
1 Random Forest 66.76 ± 0.11 100.00 ± 0.00 123.82 ± 3.89 7

2 Parallel Counter GPU Extra 92.17 ± 0.52 43.28 ± 0.04 817.30 ± 253.27 !
2 Weka Centralized 94.59 ± 0.04 100.00 ± 0.00 855.41 ± 97.88 7
2 Parallel Counter GPU 93.10 ± 0.34 48.44 ± 0.01 1089.03 ± 277.06 7
2 Centralizing VFDT 76.83 ± 0.35 100.00 ± 0.00 8.96 ± 0.56 3
2 Bagging 94.99 ± 0.10 100.00 ± 0.00 149.35 ± 5.37 7
2 Random Forest 78.34 ± 0.39 100.00 ± 0.00 44.47 ± 4.38 3

3 Parallel Counter GPU Extra 99.98 ± 0.01 4.29 ± 0.01 93.23 ± 6.671 !
3 Weka Centralized 99.99 ± 0.01 100.00 ± 0.00 1688.91 ± 363.89 -
3 Parallel Counter GPU 99.96 ± 0.01 9.28 ± 0.01 199.72 ± 45.62 3
3 Centralizing VFDT 99.97 ± 0.01 100.00 ± 0.00 56.17 ± 1.307 3
3 Bagging 99.99 ± 0.01 100.00 ± 0.00 371.51 ± 19.39 -

Continues on next page

90

Table 7.5 – continuation from previous page
DS Strategy Accuracy %Instances Time (seconds) Wilcoxon
3 Random Forest 99.97 ± 0.01 100.00 ± 0.00 132.43 ± 21.23 3

4 Parallel Counter GPU Extra 99.53 ± 0.59 8.80 ± 0.01 22.93 ± 3.51 !
4 Weka Centralized 99.78 ± 0.10 100.00 ± 0.00 174.26 ± 28.55 -
4 Parallel Counter GPU 98.67 ± 0.46 9.56 ± 0.01 24.90 ± 8.05 3
4 Centralizing VFDT 87.78 ± 1.92 100.00 ± 0.00 4.25 ± 0.47 3
4 Bagging 99.71 ± 0.10 100.00 ± 0.00 64.09 ± 5.49 -
4 Random Forest 96.73 ± 0.25 100.00 ± 0.00 236.34 ± 14.37 3

Table 7.6.: Results for the case study 1: known datasets (continuation). Model com-
plexity in terms of number of leaves and tree size, i.e.; deepest tree level.

DS Strategy #Leaves Tree Size

1 Parallel Counter GPU Extra 91710 94528
1 Weka Centralized 137470 142081
1 Parallel Counter GPU 132767 137210
1 Centralizing VFDT 2553 2711
1 Bagging 53375 54367
1 Random Forest 115822 120367

2 Parallel Counter GPU Extra 9519 19038
2 Weka Centralized 14158 28314
2 Parallel Counter GPU 12679 25265
2 Centralizing VFDT 206 427
2 Bagging 75225 15449
2 Random Forest 1007 2014

3 Parallel Counter GPU Extra 701 827
3 Weka Centralized 968 1147
3 Parallel Counter GPU 667 855
3 Centralizing VFDT 247 379
3 Bagging 530 652
3 Random Forest 570 693

4 Parallel Counter GPU Extra 1929 3793
4 Weka Centralized 2212 4408
4 Parallel Counter GPU 1831 3552
4 Centralizing VFDT 457 877
4 Bagging 2208 4207
4 Random Forest 5917 10232

Table 7.5, and table 7.6 show the results for the case study 1. The accuracy of Paral-
lel Counter GPU Extra is comparable with that of the other methods in all datasets,
although being slightly lower for the airlines and covtypeNorm datasets.

Observe that, while preserving accuracy, our strategy reduces the number of examples

91

used for training, up to a 95% (around 49% in the worst case). This results in an
important improvement in speed terms, when compared with our previous work, Parallel
Counter GPU. Such improvement is due exclusively to the extra filtering proposed,
independently of the GPU optimization shared by both strategies. When compared with
the rest of the strategies, our proposal is consistently faster than the Weka Centralized
approach and even faster than Bagging and Random Forest in some cases. Centralizing
VFDT, given its incremental nature, is by far the fastest of the considered strategies,
but this is payed with a poor accuracy, even when all the available examples are used to
induce the model.

Bagging always maintains a similar accuracy as the Weka Centralized approach, show-
ing a consistent good time performance, which results of working with one third of the
data in each distributed node. Bagging seems to overcome the possible bias imposed
by data distribution, even if such bias is low in this case, as the data was stratified for
distribution. It would be interesting to test this method with truly biased distributed
datasets.

The decay of accuracy and time performance shown by Random Forest in some
datasets, is likely due to the random selection of attributes at each splitting point,
i.e., the most informative attributes could not be selected, tending to create bigger and
less accurate trees. Also, being 48 the maximum number of trees in the forest enabled in
our setting, there was not improvement in accuracy neither. Furthermore, the resulting
bigger trees tended to be slower to induce that those obtained by Bagging.

Due to space limitations, the detailed results about confusion matrix are omitted. The
number of leaves and tree size are an indicator of the complexity of the induced trees, but
no significant differences were found, with the exception of Random Forest, as explained
above; and VFDT that always creates much smaller trees. No significant differences
were found for the confusion matrixes, neither. We expected to improve accuracy for
the minority classes in the KDDCup99 dataset, but a more refined sampling method,
such as the one described in [29], seems to be required.

Observe that the proposed Windowing based method could be used in conjunction
with assembly techniques, such as Bagging and Random Forest, i.e., building forests of
trees induced using Parallel Counter GPU Extra, which is consistently faster than the
Weka Centralized approach traditionally adopted.

7.2.2. Case study 2: pixel-based segmentation

Table 7.7.: Results for case study 2 (n/a means not available). In Wilcoxon column, the accuracy of Parallel
Counter GPU Extra is compared against each method, a check mark means win, a cross lose, a - a
tie, and ! means that the comparison is not possible.

Strategy Accuracy %Instances Time (seconds) Wilcoxon Sen Spe
Parallel Counter GPU Extra 67.61 ± 19.32 37.00 ± 3.52 3782.26 ± 1094.21 ! 60.96 64.83
Weka Centralized 63.68 ± 18.44 100.00 ± 0.00 6436.64 ± 923.16 3 60.80 61.60
Centralizing VFDT 53.34 ± 20.58 100.00 ± 0.00 32.03 ± 2.61 3 53.10 58.51
Bagging 64.25 ± 21.78 100.00 ± 0.00 1138.83 ± 108.83 3 65.40 59.16
Random Forest 58.88 ± 23.71 100.00 ± 0.00 1817.10 ± 179.18 3 68.78 49.34

Continues on next page

92

Table 7.7 – continuation from previous page
Strategy Accuracy %Instances Time (seconds) Wilcoxon Sen Spe

Original results [1] 67.00 ± n/a n/a n/a n/a ! 71.00 59.00

Table 7.8.: Results for case study 2 (continuation) (n/a means not available). Model
complexity in terms of number of leaves and tree size, i.e.; deepest tree level.

Strategy #Leaves Tree Size

Parallel Counter GPU Extra 25085 50169
Weka Centralized 41678 83355
Centralizing VFDT 600 1199
Bagging 18016 36031
Random Forest 28782 57563
Original results [1] n/a n/a

Table 7.7, and 7.8, show the results for the case study 2. The original case study
results, reported in [1], are also included in comparisons. That work uses a time series
approach based on the intensity value of each labeled pixel over time. Each training
example represents a spatial positioned signal, i.e., a spatio-temporal pattern, that it is
smoothed using a polynomial model. A k-Nearest neighbor approach, with k = 20 and
Euclidean distance as similarity function, is used for classification. The leave-one-out
method is also adopted for evaluation. On the contrary, Parallel Counter GPU is not
included, given that the new extra strategy already showed to be consistently faster,
while preserving accuracy. Even though, results for that strategy, using a different
preprocessing setting, are reported in [48].

As usual, sensibility (Sen) is the rate of true positive observations (precancerous
lesion) against the sum of true positive plus false negatives, and the specificity (Spe) is
the rate of true negative (no precancerous lesion) observations against the sum of true
negative plus false positives.

When compared to the other considered strategies, Parallel Counter GPU Extra ob-
tains significantly the highest accuracy, based on the Wilcoxon signed rank test com-
puted as before. This may be a consequence of a better integration of examples from
the negative classes, thus improving specificity. These examples, although numerous,
thanks to the class balance, do not appear in patients as frequently as examples from
the positive class, as shown in Table 7.3. This in turn affects the accuracy evaluation in a
leave-one-out setting, favoring the positive class, but possibly the Windowing technique
helped in this case. It is also interesting to note how our method, while not directly
comparable, approaches the results from [1], having the same accuracy, but differing on
sensibility and specificity, which it is expected since other preprocessing and techniques
were applied.

The wide standard deviation of the accuracy results is an indicator of how different
is the accuracy for each patient. For some patients the accuracy is over 90% while for
others is about 15%, this happens because of the nature of the data, which it is a common

93

place in medical applications. For some patients there are few observations, and also
some classes happen in few patients, being a problem when adopting a leave-one-out
approach for testing.

Our method is considerably faster than the Centralized approach, while slower than
Bagging and Random Forest, but with significant better accuracy. Centralized VFDT
stands out as the faster strategy, but it also has the worst accuracy. Also, the tendency
in the model complexity from the case study 1 can be seen in this case as well.

94

Part III.

Conclusions and future work

95

This part closes our work giving insights about the most relevant conclusions that
can be yielded from this document, taking into account the different ideas and related
discussions presented throughout the work. Also, related future work is highlighted, spe-
cially addressing current developments in the form of analysis the Windowing technique
to asses its applicability as a subsampling technique; a new distributed environment for
the JaCa model, which directly impacts on JaCa-DDM; and a related Web interface for
JaCa-DDM which development is still in progress.

96

8. Conclusions

Considering the hypothesis and objectives raised at the beginning of this work, we
corroborate that the agents & artifacts paradigm enables the definition of a flexible
framework for DDM. This was demonstrated by construction by means of JaCa-DDM,
which allows the definition of traditional agent-based approaches, e.g.; centralizing and
meta-learning; new approaches, such as the Windowing-based approach introduced and
discussed throughout this document; and even traditional Data Mining centralized ap-
proaches. JaCa-DDM is supported by a model to implement such approaches in the form
of encapsulated learning strategies, that can be deployed in a distributed environment
and tested in a standard fashion, thus allowing the comparison of learning strategies,
enforcing the research on agent-based DDM methods. Also, the JaCa-DDM model is
flexible enough to allow the integration of technologies like GPU computing, which was
used to enhance our proposed Windowing-based approach for DDM to deal with large
datasets, obtaining an overall good results in our case studies.

In the conclusions that follow, a more in depth discussion of what JaCa-DDM, and
the agents & artifacts paradigm in general, mean to agent-based DDM is presented. The
discussion has three main points:

• Arguably, the core problem in agent-based DDM is not learning but collabora-
tion [37]. From the best of our knowledge, the opposite is assumed; agent based
DDM systems [84, 42, 2, 4, 98] are conceived as deployment systems for distributed
learning algorithms. Thus focusing on learning, not in collaboration. In our opin-
ion, the resulting interactions among agents in the cited systems are simpler than
the ones promoted by the JaCa-DDM strategies. An exception to this learning cen-
tered approach is the formal adoption of workflows in agent based DDM[57, 58].
The agents and artifacts approach used in JaCa-DDM goes in the same direction,
enabling to focus on collaborative issues with more appropriate tools.

• JaCa-DDM enforces the aggregation of three independent components: Distributed
Data managing, Data Mining algorithms, and Collaborative workflows. Such ag-
gregation is due to the adoption of the agents & artifacts paradigm. Agents are
concerned with workflows; the learning algorithms and data managing issues are
artifact affairs, which it is not entailed by any other of the discussed agent-based
DDM approaches. All this goes beyond of mere division of labour, it is about iden-
tifying that some composants of the workflows can be seen as agents, while others
are tools for them. Even when this conception of the workflows seems natural, it
is far from being the usual approach to agent based DDM. Usually agents are seen
as the Data Mining algorithms themselves [84, 53, 42, 5, 2], blurring the distinc-
tion between the agents and the tools they can use to learn. Such distinction is

97

relevant, since the theoretical and practical foundations for this composants differ:
JaCa-DDM workflows are founded on the BDI constructors provided by Jason,
e.g., beliefs, goals, intentions, speech acts messages, plans, actions, events, etc.;
While data managing and learning algorithms are supported by the artifacts con-
structors, e.g, observable properties, signals, operations, linked operations. We are
convinced that the agents and artifacts approach adopted in JaCa-DDM promotes
clearer designs, making easier the implementation, configuration and deployment
of agent based DDM systems.

• In JaCa-DDM, Workflows are clearly defined in terms of interactions between
agents and artifacts, i.e.; learning strategies, and so do their deployment. Such
definitions are easy to implement, because the JaCa programming tools are based
on the agents and artifacts paradigm. Artifacts solve the “agentification” of the
WEKA and MOA algorithms and representations, enabling our agents to exploit
them. Almost every aspect of JaCa-DDM beyond the basic definitions, can be
extended or enhanced. JaCa-DDM has the means to go beyond traditional agent
based DDM, where the MAS is merely used as a distribution tool; in order to
explore full-fledged agent based contributions for DDM.

With regard of the learning strategies,and JaCa-DDM technology presented in this
work, some conclusions can be drawn:

• The JaCa-DDM strategies presented in this work were conceived as a proof of
concept, also testing large and distributed datasets, to promote the use of our
system for designing, implementing, and testing DDM based workflows. Different
approaches such as centralizing, meta-learning, Windowing, and even the coupling
with GPU technology are well adapted to the JaCa-DDM model. In particular,
Parallel Counter GPU Extra strategy showed to be well suited to DDM scenarios,
involving large amounts of data scattered in different sites. The proposed en-
hancements overcome the time performance issues associated to Windowing based
strategies, while achieving similar accuracy results to the centralized approach.
The strategy seems also very promissory for real applications such as pixel-based
segmentation problems, when combined with a careful image preprocessing. Dis-
tributing the data in such cases, improves time performance and reduces memory
loads, when comparing to centralized approaches, keeping also a decent overall per-
formance when compared to meta-learning methods, e.g., Bagging and Random
Forest.

• JaCa-DDM strategies are encapsulated, with respect to their deployment system.
This novel idea is of great value for evaluating the strategies when deployed in
different contexts, and also makes possible to implement a learning strategy for a
given concern, such as data privacy, or model accuracy. Every learning strategy
can have strong and weak points, instead of covering all possibilities. For the
learning strategies presented here, table 8.1, taken from section 4.5, shows such
strong and weak points, which in turn are of great value to decide what learning

98

strategy to use given a specific scenario. Such is the nature of the encapsulation
of learning strategies.

Table 8.1.: Strong and weak points of learning strategies taking as a basis the individual
performance of each strategy.

Strategy Best quality Worst quality

Centralized J48 Accuracy Speed
Centralized VFDT Speed Accuracy

Centralized Bagging Accuracy Speed
Centralizing J48 Accuracy Traffic

Centralizing VFDT Speed Traffic
Round Traffic Accuracy

Distributed Bagging Accuracy Traffic
Distributed Random Forest Speed Accuracy

Counter J48 Instances used Speed
Counter VFDT Speed Accuracy
Round Counter Instances used Speed

Parallel Round Counter Instances used Traffic
Parallel Counter GPU Accuracy Speed

Parallel Counter GPU extra Instances used Accuracy

99

9. Future work

The experiments and developments discussed in this work, gave us various insights of
how to create new learning strategies that are interesting from the agent-based DDM
researching point of view. Some ideas in that regard are presented in this section. Fur-
thermore, JaCa-DDM as a technology has various points of improvement, which are also
discussed in this section. Finally, future work in progress is presented in corresponding
subsections, including an analysis of Windowing as a subsampling technique, an im-
provement of distributed transparency for the JaCa model, and an enhanced Web-based
GUI for JaCa-DDM.

With regard of the proposed Windowing-based strategies, they perform a centralized
induction exploiting a distributed search for training examples. While this allows for a
single model with a global scope of the data, it also creates a potential bottleneck. An
alternative approach would be to distribute the inductive process as well. Indeed, this
is the way adopted by meta-learning methods [25], e.g., Bagging and Random Forest,
combining the results of a number of separate learning processes in an intelligent fash-
ion. Voting, arbitrating, and combining techniques can be used [69] with this purpose.
Nevertheless, a major issue of meta-learning is obtaining models that represent a good
generalization of all the data, considering that they have been build from incomplete
local data [80]. Adopting Windowing as a subsampling process in meta-learning meth-
ods, to see if it can improve the accuracy of meta-learners, as it does not have a random
nature in contrast to traditional bootstrap, is a very interesting line of research, further
discussed in the next subsection.

Following the previous idea, the distributed Bagging strategy gave us an insight about
how the data bias created by equally segmenting a dataset, can be overcame in a Bag-
ging schema by inducing a large amount of internal models. A strategy that combines
Windowing and Bagging to further speedup the learning process for large datasets seems
to be the next step. This strategy could heavily segment the data while sharing counter
examples to further reduce data bias and improve individual models. The mentioned
strategy serves to see how JaCa-DDM can be used to further investigate and improve
DDM approaches.

As mentioned, at the beginning of this work, in the scope an limitations, our experi-
mental settings produce stratified partitions of the original datasets, distributed in the
available JaCa-DDM nodes. Testing the considered strategies when this is not the case
would be of interest to evaluate their performance when facing local overrepresented
classes. Windowing-based strategies are expected to degrade gracefully in such situa-
tions, but the exact impact of such bias need to be established in future experiments.
Also, currently, JaCa-DDM is limited to classification Data Mining problems, but it
could also be adapted for clustering, or online learning, which it is an envisaged future

100

work. Support for more data sources, as currently only arff files are supported, is also
desirable.

Data managing is an issue, an artifacts one. Linking artifacts in different nodes has
some nuances and it is not very efficient. This can be faced by redesigning the artifacts
deployment, so that linkable artifacts are always together; or enhancing CArtAgo itself,
wich it is further discussed in section 9.2. For the sake of simplicity and reuse, artifacts
just wrap WEKA/MOA objects and methods, e.g., you can induce a model and classify
an instance with a classifier linked to an InstanceBase; you can add, delete and retrieve
instances. Sometimes, particularly in the distributed scenarios, a price is payed in effi-
ciency since these objects were not designed with distribution in mind. Nevertheless, it
is possible to intervene at the programming level to solve this, e.g., improving instances
representation for a faster counter examples gathering. The strategies can also be revis-
ited to work in a less centralized-like terms. Signals and observable properties are not
properly exploited in the JaCa-DDM strategies presented here; and interactions among
agents are basically message based. More decoupled strategies exploiting awareness of
the agents are possible, but they were beyond our goals for this work.

High expertise in MAS, particularly using Jason and CArtAgo, seems to be required
to fully exploit JaCa-DDM. A description language, as well as an associated graphic tool
for defining the strategies is planned to enhance the usability of the system. Improving
the user experience is also desirable, e.g., a Web based interface.

In what follows, a more in depth presentation of ongoing future work is addressed.

9.1. Windowing as a subsampling technique

Understanding how the Windowing process work is key to determine the best ways
to exploit it. An interesting find during the experiments from chapter 6, was with
regard of our Windowing-based strategies and the reduction of training instances used
to learn. The reduction seem to be greater as the accuracy obtained for a specific dataset
improved. This negative correlation can be viewed in figure 9.1, which was taken from
section 6.3.

101

60 70 80 90 100

0
20

40
60

80

Accuracy

%
Tr

ai
ni

ng
 e

xa
m

pl
es

 u
se

d ●
●

●

●

●

●

●

●

●

●●

● ●

●●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

Figure 9.1.: Correlation plot of accuracy and number of examples used , considering
all data points, from section 6.3. The Pearson correlation coefficient is
−0.8175845.

Possibly, this negative correlation is due to consistent, redundant datasets; where
Windowing gathers fewer counter examples, and these counter examples induce high
accurate models. We plan to verify this hypothesis using consistent synthetic datasets
with a variable amount of redundancy. High redundant synthetic datasets should pro-
duce high accurate models with fewer examples than the low redundant ones.

To meet the requirement of this experiment, some Windowing-based strategies, and
also the API of JaCa-DDM have been modified in order to make available the final
training set used for learning and also the dataset that is conformed from the instances
not used. These datasets can also be analyzed to determine its properties, and make
comparisons with subsampling techniques, such as bootstrap. From the previous anal-
ysis, it is possible to asses the viability of the Windowing as a subsampling technique
that can be used, for example, in conjunction with Meta-learning techniques.

In this work, the Windowing-based strategies are coupled with decision trees, this is
due that we wanted to concentrate on the learning strategies as a process more than on
the actual classifiers, which also allowed us to make fair comparisons. But the technique
appears not to be bound to a specific classifier, and we have already tested how the

102

Windowing technique can be extended to other classifiers such as Naive Bayes [39].
Interest with Naive Bayes is in its ability to endure noise in the data without decreasing
accuracy. Also, as Windowing works by only considering not redundant instances, it
can potentially be used as a way to mitigate data noise, as noise can not be redundant.
The coupling with Naive Bayes and Windowing as a subsampling technique can give us
valuable insights in the matter of data noise which we’ll try to further investigate.

9.2. Extending the JaCa distributed capabilities

In the process of creating and working with JaCa-DDM, various shortcomings of the
JaCa technology were found, these shortcomings are with regard to distributed settings,
being the most important the fact that local and remote workspaces are defined and
treated differently, which derives in the following problems: i) There is not distributed
transparency for agents, being forced to directly manipulate network information, mak-
ing network distinctions between workspaces. ii) The underlying environment topology
is difficult to represent and exploit by the agents as it does not follow any structure or
workspace relations beyond the sharing of the same node. All of these problems have
the consequence of reducing the abstraction level in which agents work, impacting flex-
ibility and environment exploitation as well. The impact for JaCa-DDM is in the way
learning strategies are defined, as the programmer has sometimes to take directly care
of IP addresses, which may be cumbersome, reducing flexibility.

Another problem is the lack of proper configuration facilities to allow the inclusion of
remote workspaces information at deployment time, meaning that host information for
remote workspace spawning need to be hard-coded on the agent programs or externally
supported. To spawn a remote workspace, a CArtAgO node needs to be running on the
destination host, and there is not any integrated facility to manage them automatically
when needed. Furthermore, the current distributed implementation does not exhibit
any degree of fault tolerance, this is specially important for possible network connection
problems that may arise in a distributed system.

With the awareness of the mentioned problems, a synergy between the research group
of JaCaMo [12] and JaCa-DDM was created. JaCaMo is the result of the orthogonal
composition of three technologies for MAS: Jason [13] (taken as a proper name inspired
by Greek mythology), CArtAgO [74] (Common ARTifact infrastructure for AGents Open
environments), and MOISE [40] (Model of Organisation for multI-agent SystEms).

In this section, a proposal to solve the identified problems is presented. A separation
between environment and infrastructure is suggested. The environment is represented
as a hierarchical tree structure, which represents the topology. In this tree, each node
is a workspace which actual physical placement on the distributed system is irrelevant.
Workspaces may be deployed in different places, but for the agents point of view, it
only matters their placement in the topology. A workspace may be the logical parent
of another one, multiple workspaces can be in the same physical place, and there is
no restriction about how the topology may be organized, e.g.; workspaces on the same
physical place may be on different branches. This allows to organize environments as

103

it is usually done in CArtAgO, but in a more structured way, also supporting remote
workspaces transparently.

In a practical sense, each workspace in the tree is represented by a path starting
at the root workspace, these paths brings the notion of logical placement that agents
require to organize and exploit their environment. We adopt a Unix-like path format to
represent this placement, but using a ”.” instead of a ”/”, following Jason syntax. These
paths are used by the agents to execute environment related actions, such as creating
new workspaces or joining one. From the proposed JaCaMo API, there is no difference
between local and remote actions related to workspaces. For example for joining local
and remote workspaces, which it is related to figure 2.6; with the proposal, a workspace
topology would be created, a possibility is to have workspace2 and workspace3 as direct
descendants of the root workspace main, with this setting the associated code snipped
is as follows:

1 joinWorkspace("main", WspId1);

2 joinWorkspace("main.workspace2", WspId2);

As in current CArtAgO, agents may work in multiple workspaces at the same time, but
the concept of current workspace is dropped since in actuality all the joined workspaces
should be considered the current context of working. Nevertheless, agent may specify
the target workspace for an action. A new introduced concept is the home workspace
of an agent, which it is the workspace where the agent is initially deployed, serving as a
relative reference to other places in the topology, providing a default place for the agent,
and also serving as the default workspace to execute actions when a target workspace is
not specified.

With regard to the infrastructure, a layer is added to manage distribution, this layer
provides the required services for the agents to exploit their distributed environment.
These services include: i) Workspace management, so agents can create, join, and quit
workspaces no matter their physical placement; ii) Topology inspection, so agents can
reason about the current topology organization and do searches concerning workspaces;
iii) Workspace dynamics observation, so agents can know when other agents manage
workspaces, or when workspaces disconnect and reconnect after a network problem; iv)
Disconnection and fault tolerance to manage and recuperate from network problems,
which it is currently left as future work. We believe that the set of mentioned services
do not only bring distributed support, but also enhance the dynamics of MAS in general,
extending its possibilities.

9.2.1. Formal description

JaCaMo assumes an endogeneous approach to MAS, i.e., the environment is an explicit
part of the system:

Definition 9.2.1 A MAS is composed by a set of agents (Ags), their environment
(Env), and an infrastructure (Infr) running both of them:

MAS = {Ags, Infr,Env}

104

The set of agents is composed by n ≥ 1 agents:

Ags = {a1, . . . , an}

Each agent, as usual, is composed by beliefs, actions, and other elements equal to:

ai = {bels, acts, . . . }

By default, when created, an agent includes minimally:

ai = {joined(home)}, {join, quit, create}, . . . }

which means that every agent believes he has joined a home workspace, and has actions
to join, quit, and create workspaces; and update the information about the environment.

node 1

home 1 home 2

main

living 1 living 2kitchen 1 kitchen 2

node 2 node 3

Figure 9.2.: The intented view of an endogeneous environment.

Figure 9.2 illustrates the intended view of the environnment in this proposal. First,
the environment, properly speaking, is a tree of workspaces, expressing a kind of spatial
relation among workspaces, e.g., the kitchen 1 is at the home 1. Second, nodes and
hosts are not part of the environment, but are defined as part of the infrastructure of
the MAS, nevertheless, workspaces keep information about its corresponding physical
node.

The infrastructure is a layer hidden to the agents, that gives the low level support to
distribution, formally defined as:

Infr = {Nodes,Hosts}

where:

105

• Nodes = {node1, . . . , nodek} is a set of CArtAgO nodes, i.e.; processes, possibly re-
mote, where workspaces can be created. Each nodei is a tuple 〈ni, SWsps, hi, port〉,
where ni is an unique identifier for the node; SWsps ⊆ W is the set of spawned
workspaces in the node, containing at least a default workspace for the node; hi is
an identifier of the host computer where the node exists; and port is the host port
used by the node process.

• Hosts = {host1, . . . , hostp} is the set of available computer devices on the dis-
tributed system. Each hosti is a tuple 〈hi,HNodes, ip〉, where hi is a host unique
identifier, HNodes ⊆ Nodes is a set of hosted nodes, and ip is the IP address of
the computer.

Formally, the environment Env is defined as a graph:

Env = {W,E}

where:

• W = {w1, . . . , wi} is a finite, non-empty set of i ≥ 1 workspaces that contain
artifacts. Each wi = 〈idW, name, ni〉, where idW is an unique identifier for the
workspace, name is a logical name, and ni is a reference to the CArtAgO node
in Infr that contains wi. The node element establishes a connection between
the environment and the infrastructure, in order to forward agent actions to the
destined physical place.

• E ⊂ W 2 is a set of edges over the workspaces, such that Env is minimally con-
nected, i.e., it is a rooted tree that represents the environment topology.

For instance, following Figure 9.2, Env = {W,E}, and considering for simplicity only
the name of each wi, such that:

• W = {main, home1, home2, living1, kitchen1, living2, kitchen2}

• E = {{main, home1}, {main, home2}, {home1, living1}, . . . }

The expression w1.w2wn denotes a path on Env, if:

• wi ∈W for i = 1, . . . , n;

• {wi−1, wi} ∈ E for i = 2, . . . , n.

Abusing a little bit of the notation, we can write w1.wn ∈ Env. For instance,
main.home1.living1 ∈ Env. Some useful operations over paths, include:

• last(w1.w2.wn) = wn

106

• butlast(w1.w2.wn−1.wn) = w1.w2.wn−1

• add(w,w1.w2.wn, Env) = w1.w2.wn.w. This involves adding w to W , and
{wn, w} to E in Env.

• del(w,w1.w2.wn.w,Env) = w1.w1.wn. This involves deleting w from W ,
and {wn, w} from E in Env.

In what follows, the transition rules related to environment agent actions are described,
workspaces denote paths in the environment.

Joining a workspace

An agent can ask himself about the workspaces he has currently joined: agbels |=
joined(w), if and only if, w is a workspace currently joined by the agent. Recall that by
default agbels |= joined(home). An agent can join different worspaces concurrently, so
that agbels |= joined(Ws) unifies Ws with a list of the workspaces joined by the agent.
Two transtion rules define the behavior of the action join. First, an agent can join a
worspace w, if and only if w is a path in the environment Env and it is not believed to
be already joined:

(join1)
join(w) | w ∈ Env ∧ agbels 6|= joined(w)

〈ag,Env〉 → 〈ag′, Env〉
s.t. ag′bels = agbels ∪ {joined(w)}

Second, nothing happens if an agent tries to join a previously joined worspace:

(join2)
join(w) | agbels |= joined(w)

〈ag,Env〉 → 〈ag,Env〉
Any other use of join fails.

9.2.2. Quiting workspaces

An agent can quit the workspace w if he believes he had joined w. The agent forgets
such belief.

(quit1)
quit(w) | agbels |= joined(w)

〈ag,Env〉 → 〈ag′, Env〉
s.t. ag′bels = agbels \ {joined(w)}

If the agent tries to quit a workspace he has not joined yet, nothing happens:

(quit2)
quit(w) | agbels 6|= joined(w)

〈ag,Env〉 → 〈ag,Env〉

107

Creating workspaces

An agent can create a workspace w, if it is not a path in the environment, but butlast(w)
is one:

(create1)
create(w) | w 6∈ Env ∧ butlast(w) ∈ Env

〈ag,Env〉 → 〈ag,Env′〉
s.t. Env′ = add(last(w), butlast(w), Env)

Observe that the result of creating a workspace must be propagated to the rest of the
agents in the MAS. This could be done by the infrastructure, or broadcasting the add
operation. The actual node where the workspace is going to be created is decided by the
infrastructure following a policy, by default the infrastructure spawns the workspace on
the same node where its parent workspace is running.

Trying to create an existing workspace does nothing:

(create2)
create(w) | w ∈ Env
〈ag,Env〉 → 〈ag,Env〉

9.2.3. Implementation

The model introduced on the previous section is open enough to allow different imple-
mentations. This section presents a practical possibility, intended to be integrated with
JaCaMo. The core implementation and main design choices are related to the general
architecture, and configuration and deployment.

General architecture

The architecture to support agent services is based on the concept of Node, which
refers to the Nodes element in Infr. Nodes represent independent CArtAgO processes,
possibly remote, running on a given host (Hosts element in Infr), and associated to
a port. Nodes are the main abstraction to manage workspaces (W element in Env),
and as such, they provide all the necessary tools to create, join, and quit workspaces, as
well as the means to communicate with other nodes in order to maintain a consistent
workspace topology, and properly dispatch topology related events. The workspace
topology corresponds to the E element in Env. A NodeArtifact is the gateway used by
an agent to interact with the node services and to observe the distributed environment.
There is a NodeArtifact in each workspace, and every agent has access to one of them,
which one depends on its home workspace, which in turn it is intended to be on the
same node as the agent process.

Nodes communicate between each other following a centralized approach: one node is
designated as the central node, this is usually the node deployed by default by JaCaMo,
so every change on the topology is inspected and approved by a single node, and the

108

associated actions and events are dispatched from there. This centralized approach
makes possible to maintain a consistent topology, avoiding run conditions. To exemplify
node communication, the workflow for creating a new workspace is the following:

• An agent that wants to create a workspace issues the action to its corresponding
NodeArtifact, passing a tree path.

• The artifact checks if the tree path is consistent with the topology tree, if it is, it
sends a request to the central node.

• The central node issues a request to the end node where the workspace is actually
going to exist. By default, it chooses as end node the same as the parent workspace
from the path given.

• The end node creates the workspace and returns control to the central node.

• The central node makes the corresponding changes to the workspace topology and
communicates the success to the original requesting node. It also dispatches a
create and tree change event to the other nodes.

As the node model is centralized, there exists the concern of a single point of fail-
ure, that is why all nodes maintain redundant information about the topology, so it is
possible to recuperate from a central node dropping, as any node can take the role of
central node. The topology structure is also lightweight, which speeds up the tree syn-
chronization among nodes, this synchronization is only required when there is a change
in the topology. This redundancy also allows to boost the efficiency of operations such
as joining and quitting workspaces, since those operations only need to read from the
topology, so the local copy is used in those cases. Communication with the central node
is only required in cases where a change in the topology is required. We believe that in
traditional environment management, it is more common for the agents to join and quit
workspaces than to create new ones.

MAS configuration and deployment

To ease the deployment of the distributed infrastructure is a goal of our overall proposal,
this means to be able to configure and launch the desired hosts, nodes, and workspaces
that will take part in the MAS from the start. It is also possible to manually add new
nodes after deployment. The idea is to extend the deployment of JaCaMo, where only
workspaces are considered. JaCaMo uses a text file known as the JCM file to configure
the deployment of the MAS. The intention is to further include fields in this file to also
configure host, and nodes for distributed systems; and add the facilities to automatically
launch CArtAgO nodes in remote machines through a daemon service.

The changes to the JCM file include:

• Host configuration: assign a logical name and IP address to each host.

109

• Node configuration: assign a logical name for the node, i.e.; the name of the default
workspace; the related host name; and optionally a port number.

• Workspaces configuration: relate each workspace to a specific node.

• Lib file: the path to a jar file containing all the necessary files to launch CArtAgO
nodes. This includes custom artifacts binaries, third party libraries, custom classes
binaries, and any configuration file. This file is intended to be shared among all
nodes.

9.3. JaCa-DDM Web-based GUI

A work is in progress to implement a new Web-based GUI for JaCa-DDM, this new
system has the goal to provide a better user experience, making a distinction between
configuration and usage, and providing facilities to share learning strategies, artifacts,
and datasets, to build a local community for agent-based DDM research. Also, facilities
for the execution of batch experiments is added, and the possibility to administer them.
The configuration is done as ”packages” of experiments.

In the system there are tree kinds of user roles:

• Administrator: its major concern is to make available new computer nodes for
experiments, experiments and user administration.

• Researcher: this kind of user can share strategies, artifacts, and datasets, as well
as create and configure experiments.

• General public: this kind of user is for demonstration purposes, she can only
configure and execute some experiments.

The navigation structure of the system is as follows:

• Login screen: to identify the role of the user. Only the administrator can register
new users. A general public user does not need to login.

• Configuration: administrator only. To administer computer nodes, experiments,
users, and repositories of contributions.

• Repository: to share and download learning strategies, artifacts, and datasets. An
user can also update new versions of shared material.

• Experiments: allows to create, configure, save, load, and administer packages of
experiments, as well as to access the experiment history with associated partial
and final results.

Figure 9.3 shows the main screen for the administrator, which has every option en-
abled.

110

Figure 9.3.: Main screen of the new Web-based GUI for JaCa-DDM.

The new system does not change any related JaCa-DDM model, it is just a tool to
generate XML configuration files as explained in section 3.2.3. Also, the new GUI is on
top of the JaCa-DDM core system, so its development is independent. As an example
of some screens, figure 9.4 shows the general wizard to configure an experiment, while
figure 9.5 shows the history results from the experiments of an user.

111

Figure 9.4.: Experiment configuration wizard.

An interesting part of the implementation is the contribution of artifacts. In order
for artifacts to work, they may need a third-party library, Java classes, or other kind of
files (for example, to work with GPUs kernel files are needed). The distribution of such
artifact is on the form of a zip file with an specific folder structure:

• artifact: contains the artifact class.

• lib: contains third party libraries needed.

• classes: contains needed Java classes.

• extra: contains any extra file.

Once an artifact is uploaded, the file is extracted and added to the code base of JaCa-
DDM making the artifact available to use by other users in their learning strategies.
This code base is then distributed along the various nodes in the system though ssh
connections (ssh credential can be configured).

112

Figure 9.5.: History results screen.

113

Bibliography

[1] Héctor-Gabriel Acosta-Mesa, Nicandro Cruz-Ramı́rez, and Rodolfo Hernández-
Jiménez. Aceto-white temporal pattern classification using k-nn to identify precan-
cerous cervical lesion in colposcopic images. Computers in biology and medicine,
39(9):778–784, 2009.

[2] Kamal Ali Albashiri and Frans Coenen. Agent-enriched data mining using an ex-
tendable framework. In Agents and Data Mining Interaction, pages 53–68. Springer,
2009.

[3] Kamal Ali Albashiri, Frans Coenen, and Paul Leng. An investigation into the issues
of Multi-Agent Data Mining. University of Liverpool, 2010.

[4] Sung Wook Baik, Jerzy Bala, and Ju Sang Cho. Agent based distributed data
mining. In Parallel and Distributed Computing: Applications and Technologies,
pages 42–45. Springer, 2005.

[5] Stuart Bailey, Robert Grossman, Harimath Sivakumar, and A Turinsky. Papyrus:
a system for data mining over local and wide area clusters and super-clusters. In
Proceedings of the 1999 ACM/IEEE conference on Supercomputing, page 63. ACM,
1999.

[6] Omar Baqueiro, Yanbo J Wang, Peter McBurney, and Frans Coenen. Integrating
data mining and agent based modeling and simulation. In Industrial Conference on
Data Mining, pages 220–231. Springer, 2009.

[7] Tristan M Behrens, Koen V Hindriks, and Jürgen Dix. Towards an environment
interface standard for agent platforms. Annals of Mathematics and Artificial Intel-
ligence, 61(4):261–295, 2011.

[8] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with
JADE. John Wiley & Sons, Ltd, England, 2007.

[9] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correla-
tion coefficient. In Noise reduction in speech processing, pages 1–4. Springer, 2009.

[10] Michael J Berry and Gordon Linoff. Data mining techniques: for marketing, sales,
and customer support. John Wiley & Sons, Inc., 1997.

[11] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Mas-
sive online analysis. The Journal of Machine Learning Research, 11:1601–1604,
2010.

114

[12] Olivier Boissier, Rafael H Bordini, Jomi F Hübner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with jacamo. Science of Computer Pro-
gramming, 78(6):747–761, 2013.

[13] Rafael H. Bordini, Jomi F. Hübner, and Mike Wooldridge. Programming Multi-
Agent Systems in Agent-Speak using Jason. John Wiley & Sons Ltd, 2007.

[14] Ivan Bratko. Prolog: programming for artificial intelligence. Addison-Wesley, 2001.

[15] Michael E Bratman. Intention, plans, and practical reason. 1987.

[16] Michael E Bratman, David J Israel, and Martha E Pollack. Plans and resource-
bounded practical reasoning. Computational intelligence, 4(3):349–355, 1988.

[17] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[19] Sarah E Brockwell and Ian R Gordon. A comparison of statistical methods for
meta-analysis. Statistics in medicine, 20(6):825–840, 2001.

[20] Giovanni Caire, Elena Quarantotto, and Giovanna Sacchi. Wade: an open source
platform for workflows and agents. In MALLOW, 2009.

[21] L. Cao, G. Weiss, and S. Y. Philip. A brief introduction to agent mining. Au-
tonomous Agents and Multi-Agent Systems, 25(3):419–424, 2012.

[22] Longbing Cao. Data Mining and Multi-agent Integration. Springer, Berlin Heidel-
berg New York London, 2009.

[23] Longbing Cao, Ana L. C. Bazzan, Vladimir Gorodetsky, Pericles A. Mitkas, Ger-
hard Weiss, and Philip S. Yu. Agents and Data Mining Interaction: 6th ADMI
2010, Toronto, ON, Canada, volume 5980 of Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin Heidelberg, 2010.

[24] Longbing Cao, Vladimir Gorodetsky, Jiming Liu, Gerhard Weiss, and Philip S. Yu.
Agents and Data Mining Interaction: 4th ADMI, Budapes, Hungary, volume 5680
of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin Heidelberg New
York, 2009.

[25] P. K. Chan and S. J. Stolfo. On the accuracy of meta-learning for scalable data
mining. Journal of Intelligent Information Systems, 8(1):5–28, 1997.

[26] William F Clocksin and Christopher S Mellish. Programming in PROLOG. Springer
Verlag, 2003.

[27] Geoff Cumming. Understanding the new statistics: Effect sizes, confidence intervals,
and meta-analysis. Routledge, 2012.

115

[28] Josenildo C Da Silva, Chris Giannella, Ruchita Bhargava, Hillol Kargupta, and
Matthias Klusch. Distributed data mining and agents. Engineering Applications of
Artificial Intelligence, 18(7):791–807, 2005.

[29] Annarita D’Addabbo and Rosalia Maglietta. Parallel selective sampling method
for imbalanced and large data classification. Pattern Recognition Letters, 62:61–67,
2015.

[30] Fatheme Daneshfar and Hassan Bevrani. Load–frequency control: a ga-based multi-
agent reinforcement learning. IET generation, transmission & distribution, 4(1):13–
26, 2010.

[31] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of
the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 71–80. ACM, 2000.

[32] Hamdi Ellouzi, Hela Ltifi, and Mounir Ben Ayed. An intelligent agent based archi-
tecture for visual data mining. International Journal of Advanced Computer Science
& Applications, 1(7):151–157, 2016.

[33] T. Finin et al. An overview of KQML: A knowledge query and manipulation lan-
guage. Technical report, University of Maryland, CS Department, 1992.

[34] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.
In ICML, volume 96, pages 148–156, 1996.

[35] Johannes Fürnkranz. Integrative windowing. Journal of Artificial Intelligence Re-
search, 8:129–164, 1998.

[36] Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, and Nathalie Villa-
Vialaneix. Random forests for big data. arXiv preprint arXiv:1511.08327, 2015.

[37] Vladimir Gorodetsky, Oleg Karsaeyv, and Vladimir Samoilov. Multi-agent technol-
ogy for distributed data mining and classification. In Intelligent Agent Technology,
2003. IAT 2003. IEEE/WIC International Conference on, pages 438–441. IEEE,
2003.

[38] Y Guo and J Sutiwaraphun. Knowledge probing in distributed data mining. In
Working Notes of the KDD-97 Workshop on Distributed Data Mining, pages 61–69,
1998.

[39] David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian net-
works: The combination of knowledge and statistical data. In Proceedings of the
Tenth international conference on Uncertainty in artificial intelligence, pages 293–
301. Morgan Kaufmann Publishers Inc., 1994.

[40] Jomi F Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. Instrumenting
multi-agent organisations with organisational artifacts and agents. Autonomous
Agents and Multi-Agent Systems, 20(3):369–400, 2010.

116

[41] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 97–106. ACM, 2001.

[42] Hillol Kargupta, Daryl Hershberger Byung-Hoon, and Erik Johnson. Collective
data mining: A new perspective toward distributed data analysis. In Advances in
Distributed and Parallel Knowledge Discovery. Citeseer, 1999.

[43] Matthias Klusch, Stefano Lodi, and Gianluca Moro. Agent-based distributed
data mining: The kdec scheme. In Intelligent information agents, pages 104–122.
Springer, 2003.

[44] Matthias Klusch, Stefano Lodi, and Gianluca Moro. Issues of agent-based dis-
tributed data mining. In Proceedings of the second international joint conference
on Autonomous agents and multiagent systems, pages 1034–1035. ACM, 2003.

[45] R. Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In International joint Conference on artificial intelligence,
volume 14, pages 1137–1145. Lawrence Erlbaum Associates Ltd, 1995.

[46] Steff Lewis and Mike Clarke. Forest plots: trying to see the wood and the trees.
BMJ: British Medical Journal, 322(7300):1479, 2001.

[47] M. Lichman. UCI machine learning repository, 2013.

[48] Xavier Limón, Alejandro Guerra-Hernández, Nicandro Cruz-Ramırez, Héctor-
Gabriel Acosta-Mesa, and Francisco Grimaldo. A windowing based gpu optimized
strategy for the induction of decision trees in jaca-ddm. In Artificial Intelligence
Research and Development: Proceedings of the 18th International Conference of the
Catalan Association for Artificial Intelligence, volume 277, page 100. IOS Press,
2015.

[49] Xavier Limón, Alejandro Guerra-Hernández, Nicandro Cruz-Ramı́rez, Héctor-
Gabriel Acosta-Mesa, and Francisco Grimaldo. A windowing strategy for distributed
data mining optimized through gpus. Pattern Recognition Letters, 2016.

[50] Xavier Limón, Alejandro Guerra-Hernández, Nicandro Cruz-Ramı́rez, and Fran-
cisco Grimaldo. An agents & artifacts approach to distributed data mining. In
F. Castro, Alexander Gelbukh, and M. G Mendoza, editors, 11th MICAI, volume
8266 of LNAI, pages 338–349, Berlin Heidelberg, 2013. Springer Verlag.

[51] John Wylie Lloyd. Foundations of logic programming, volume 2. Springer-verlag
Berlin, 1984.

[52] Win-Tsung Lo, Yue-Shan Chang, Ruey-Kai Sheu, Chun-Chieh Chiu, and Shyan-
Ming Yuan. Cudt: a cuda based decision tree algorithm. The Scientific World
Journal, 2014, 2014.

117

[53] P. Luo, Q. He, R. Huang, F. Lin, and Z. Shi. Execution engine of meta-learning
system for kdd in multi-agent environment. In AIS-ADM, volume 3505 of LNAI,
pages 149–160, Berlin Heidelberg, 2005. Springer-Verlag.

[54] Wenjing Ma and Gagan Agrawal. A translation system for enabling data min-
ing applications on gpus. In Proceedings of the 23rd international conference on
Supercomputing, pages 400–409. ACM, 2009.

[55] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety.
Springer Science & Business Media, 2012.

[56] Chayapol Moemeng, Vladimir Gorodetsky, Ziye Zuo, Yong Yang, and Chengqi
Zhang. Agent-based distributed data mining: A survey. In Data mining and multi-
agent integration, pages 47–58. Springer, 2009.

[57] Chayapol Moemeng, Xinhua Zhu, and Longbing Cao. Integrating workflow into
agent-based distributed data mining systems. In Agents and Data Mining Interac-
tion, pages 4–15. Springer, 2010.

[58] Chayapol Moemeng, Xinhua Zhu, Longbing Cao, and Chen Jiahang. i-analyst:
An agent-based distributed data mining platform. In Data Mining Workshops
(ICDMW), 2010 IEEE International Conference on, pages 1404–1406. IEEE, 2010.

[59] Álvaro F Moreira, Renata Vieira, Rafael H Bordini, et al. Extending the operational
semantics of a bdi agent-oriented programming language for introducing speech-act
based communication. Lecture notes in computer science, pages 135–154, 2004.

[60] Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. A survey on data stream
clustering and classification. Knowledge and Information Systems, pages 1–35, 2014.

[61] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, 2008.

[62] James J Odell, H Van Dyke Parunak, Mitch Fleischer, and Sven Brueckner. Mod-
eling agents and their environment. In International Workshop on Agent-Oriented
Software Engineering, pages 16–31. Springer, 2002.

[63] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

[64] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems. Autonomous agents and multi-agent systems,
17(3):432–456, 2008.

[65] CA Oyeka. An introduction to applied statistical methods. Enugu: Nobern Avoca-
tion Publishing Co, pages 218–84, 1996.

[66] Ikewelugo Cyprian Anaene Oyeka and Godday Uwawunkonye Ebuh. Modified
wilcoxon signed-rank test. Open Journal of Statistics, 2(02):172, 2012.

118

[67] Byung-Hoon Park and Hillol Kargupta. Distributed data mining: Algorithms, sys-
tems, and applications. pages 341–358, 2002.

[68] REECHA B Prajapati and SUMITRA Menaria. Multi agent-based distributed data
mining. Int. J. Adv. Res. Comput. Eng. Technol.(IJARCET), 1(10):76, 2012.

[69] A. Prodromidis, P. Chan, and S. Stolfo. Meta-learning in distributed data mining
systems: Issues and approaches. Advances in distributed and parallel knowledge
discovery, 3, 2000.

[70] John Ross Quinlan. C4. 5: programs for machine learning. Morgan kaufmann,
1993.

[71] Adrian E Raftery, David Madigan, and Jennifer A Hoeting. Bayesian model aver-
aging for linear regression models. Journal of the American Statistical Association,
92(437):179–191, 1997.

[72] A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Rudy van Hoe, editor, Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, Eindhoven, The Netherlands, 1996.

[73] V. S. Rao. Multi agent-based distributed data mining: An overview. International
Journal of Reviews in Computing, 3:83–92, 2009.

[74] A. Ricci, M. Viroli, and A. Omicini. Construenda est cartago: Toward an infras-
tructure for artifacts in MAS. Cybernetics and systems, 2:569–574, 2006.

[75] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming in
multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-
Agent Systems, 23(2):158–192, 2011.

[76] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming in
multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-
Agent Systems, 23(2):158–192, 2011.

[77] Stuart Russell. Artificial intelligence: A modern approach author: Stuart russell,
peter norvig, publisher: Prentice hall pa. 2009.

[78] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark
Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Ben-
jamin Schmid, et al. Fiji: an open-source platform for biological-image analysis.
Nature methods, 9(7):676–682, 2012.

[79] John R Searle. Meaning and speech acts. The Philosophical Review, 71(4):423–432,
1962.

[80] J. Secretan. An Architecture for High-Performance Privacy-Preserving and Dis-
tributed Data Mining. PhD thesis, University of Central Florida Orlando, Florida,
Orlando, FL., USA, 2009.

119

[81] Toby Sharp. Implementing decision trees and forests on a gpu. In Computer Vision–
ECCV 2008, pages 595–608. Springer, 2008.

[82] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.

[83] Jerzy Stefanowski. Overlapping, rare examples and class decomposition in learning
classifiers from imbalanced data. In Emerging paradigms in machine learning, pages
277–306. Springer, 2013.

[84] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and P. K. Chan.
Jam: Java agents for meta-learning over distributed databases. In KDD, volume 97,
pages 74–81, 1997.

[85] Andreas L Symeonidis, Kyriakos C Chatzidimitriou, Ioannis N Athanasiadis, and
Pericles A Mitkas. Data mining for agent reasoning: A synergy for training intel-
ligent agents. Engineering Applications of Artificial Intelligence, 20(8):1097–1111,
2007.

[86] Nam-Luc Tran, Quentin Dugauthier, and Sabri Skhiri. A distributed data mining
framework accelerated with graphics processing units. In Cloud Computing and Big
Data (CloudCom-Asia), 2013 International Conference on, pages 366–372. IEEE,
2013.

[87] Xiang-Yang Wang, Xian-Jin Zhang, Hong-Ying Yang, and Juan Bu. A pixel-based
color image segmentation using support vector machine and fuzzy c-means. Neural
Networks, 33:148–159, 2012.

[88] Merrill Warkentin, Vijayan Sugumaran, and Robert Sainsbury. The role of intelli-
gent agents and data mining in electronic partnership management. Expert Systems
with Applications, 39(18):13277–13288, 2012.

[89] Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. Autonomous agents and multi-agent systems,
14(1):5–30, 2007.

[90] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin,
1(6):80–83, 1945.

[91] Ian H. Witten and Eibe Frank. Data mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, CA., USA, second edition, 2005.

[92] Marcin Wojnarski, Sebastian Stawicki, and Piotr Wojnarowski. TunedIT.org: Sys-
tem for automated evaluation of algorithms in repeatable experiments. In Rough
Sets and Current Trends in Computing (RSCTC), volume 6086 of Lecture Notes in
Artificial Intelligence (LNAI), pages 20–29. Springer, 2010.

[93] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

120

[94] Michael Wooldridge, Nicholas R Jennings, et al. Intelligent agents: Theory and
practice. Knowledge engineering review, 10(2):115–152, 1995.

[95] Junyi Xu, Li Yao, Le Li, and Yifan Chen. Sampling based multi-agent joint learning
for association rule mining. In Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems, pages 1469–1470. International
Foundation for Autonomous Agents and Multiagent Systems, 2014.

[96] Lei Xu and Michael I Jordan. Em learning on a generalized finite mixture model
for combining multiple classifiers. In Proceedings of the World Congress on Neural
Networks, volume 4, pages 227–230, 1993.

[97] L. Zeng, L. Li, L. Duan, K. Lu, Z. Shi, M. Wang, W. Wu, and P. Luo. Distributed
data mining: a survey. Information Technology and Management, 13(4):403–409,
2012.

[98] Ning Zhong, Yasuaki Matsui, Tomohiro Okuno, and Chunnian Liu. Framework of a
multi-agent kdd system. In Intelligent Data Engineering and Automated Learning—
IDEAL 2002, pages 337–346. Springer, 2002.

121

Part IV.

Appendix: accepted papers

122

An Agents & Artifacts approach to
Distributed Data Mining

Xavier Limón1, Alejandro Guerra-Hernández1, Nicandro Cruz-Ramı́rez1,
Francisco Grimaldo2

1 Universidad Veracruzana, Departamento de Inteligencia Artificial, Sebastián
Camacho No 5, Xalapa, Ver., México 91000

xavier120@hotmail.com, aguerra@uv.mx, ncruz@uv.mx
2 Universitat de València, Departament d’Informàtica, Avigunda de la Universitat,

s/n, Burjassot-València, España 46100
francisco.grimaldo@uv.es

Abstract. This paper proposes a novel Distributed Data Mining (DDM)
approach based on the Agents and Artifacts paradigm, as implemented
in CArtAgO [9], where artifacts encapsulate data mining tools, inher-
ited from Weka, that agents can use while engaged in collaborative, dis-
tributed learning processes. Target hypothesis are currently constrained
to decision trees built with J48, but the approach is flexible enough to
allow different kinds of learning models. The twofold contribution of this
work includes: i) JaCA-DDM: an extensible tool implemented in the
agent oriented programming language Jason [2] and CArtAgO [10, 9] to
experiment DDM agent-based approaches on different, well known train-
ing sets. And ii) A collaborative protocol where an agent builds an initial
decision tree, and then enhances this initial hypothesis using instances
from other agents that are not covered yet (counter examples); reduc-
ing in this way the number of instances communicated, while preserving
accuracy when compared to full centralized approaches.

Keywords: Multi-Agent System, Distributed Data Mining, CArtAgO,
Jason, Collaborative Learning

1 Introduction

As the amount of data produced by the everyday systems grows and distribute,
the problems faced by Data Mining also grows. Being this the case, Data Mining
as a research field needs to keep the pace. Distributed Data Mining (DDM) ad-
dresses the problem of mining huge amounts of distributed (even geographically)
data. From the point of view of software engineering, DDM systems need to ex-
hibit various desirable characteristics, such as scalability, configuration flexibility
and reusability [7]. Multi-Agent Systems (MAS) are inherently decentralized and
also distributed systems, being a good option to implement DDM systems that
cope with the requirements. Nowadays, agent-based DDM is growing in popu-
larity [14].

123

In this work we present JaCA-DDM, a novel approach of DDM based on the
Agents and Artifacts paradigm, as implemented in CArtAgO [9]. Agents in the
system are implemented in the well known agent oriented programming language
Jason [2]. In JaCA-DDM, CArtAgO artifacts play a big role, being the basis,
as will be explained later, for a modular, scalable, distributed Java based archi-
tecture, easy to design, implement and maintain. We also present a distributed
learning strategy that borrows ideas from collaborative concept learning in MAS
[3]. This strategy is an incremental collaborative protocol that tries to enhance a
model created with few instances, by means of contradictory instances provided
by the agents on the system. In this way, it is possible to reduce the number of
instances communicated, while at the same time maintaining the accuracy of a
centralized approach.

This paper presents a work in progress aimed to develop an agents & artifacts
competitive approach for DDM. To this end, we created an experimental setting
using the agent-artifact architecture discussed here, and we designed a series of
experiments with the aim to test the differences in accuracy and actual train-
ing examples used between our strategy and a traditional centralized strategy.
Accuracy and number of examples being our main concern, we put aside many
efficiency aspects for the moment, but the main strategy and system architecture
is open enough to allow further efficiency enhancement in the future.

This paper is organized as follows. Section 2 introduces the background for
this paper, this includes: DDM, agent based DDM, and CArtAgO environments.
Section 3 introduces JaCA-DDM and describes the generalities of our leaning
strategy. In section 4 the experimental setting and results obtained are addressed.
Finally, section 5 closes with a conclusion and future work.

2 Background

Knowledge Discovery in Databases, or data mining, is a discipline that merges
a wide variety of techniques intended for the exploration and analysis of huge
amounts of data, with the goal of finding patterns and rules somewhat hidden
in it [13]. Since data mining is about data, it is important to know the origin
and distribution of this data in order to exploit it efficiently. A traditional way
of doing data mining is using a centralized schema, in this way, all the data
and learned models are on the same site. With the ubiquitous presence of com-
putational networks, it is common to find data belonging to the same system
spreaded in various sites, even in sites that are geographically far away from
each other. From the data mining point of view, some questions may arise in
these distributed scenarios: Which is the best strategy for constructing learning
models that take into account the data from all the sites?, What is the best
way to face heterogeneous databases?, How can the communication of the data
and the data mining process be optimized?, How can the privacy of the data
be preserved?, Is there some efficient way to treat cases where the data changes
and grows constantly?

124

A lot of systems devoted to DDM have been created. According to the strat-
egy that they implement, those systems can be classified into two major cat-
egories [7]: centralized learning strategies, and meta-learning strategies. In the
centralized strategies, all the data is moved to a central site, and when all data is
merged together, data mining algorithms are applied sequentially to produce a
single learning model. In general, the centralized strategy is expensive and inap-
plicable in a lot of cases because of the cost of data transmission. Meta-Learning
refers to a general strategy that seeks to learn how to combine a number of
separate learning processes in an intelligent fashion [4]. The idea behind Meta-
Learning is to collect locally generated classification models and from there gen-
erate or simulate a single learning model. To accomplish this, it is necessary to
collect the prediction of the local classification models on a validation data set,
and then create a meta-level training data set from the predictions of the locally
generated classification models. To generate the final meta-level classification
model from the meta-level training data set, voting, arbitrating and combining
techniques can be used [6]. Meta-learning is an efficient and scalable way to do
DDM since the data transmitted is limited and the process is parallel, with a
good load balance. Nevertheless, it is not as efficient as its centralized counter-
part when a new instance needs to be classified. This is because the classification
process is not completely direct. The classification query has to traverse a deci-
sion process that maybe has various classification models involved. Centralized
learning is also simpler, to setup a meta-learning system can be more difficult.
Another disadvantage of distributed meta-learning is that, because classifiers
are not built globally on data, the model’s performance may suffer as a result of
incomplete information [11].

The learning strategy that we propose in the present is another approach for
DDM. This strategy is inspired by SMILE[3]. SMILE is a collaborative setting
for concept learning in MAS. A concept learning problem deals with keeping
consistent a hypothesis about a target concept. The hypothesis has to be consis-
tent with respect to a set of examples that can be received from the environment
or from other agents. The hypothesis is kept consistent through a series of incre-
mental revisions. In this way, the hypothesis is incrementally enhanced through
a process that involves the use of counter examples (examples not covered by the
current hypothesis). We took this idea and translate it to DDM terms, having
instead of a hypothesis a learning model that is incrementally enhanced through
the use of contradictory instances.

Data mining is applied to a variety of domains that have their own partic-
ularities and special cases, making it difficult to come with a general way of
treating all scenarios. Multi-agent systems are a straight and flexible way to
implement DDM systems since they are already decentralized distributed sys-
tems. In this way, the agents are in charge of the details of the problem. Each
agent can do various tasks concurrently and it can be seen as an independent
process. The location of the agents is in some degree irrelevant and transparent.
The communication between agents is done in a high abstract level, that makes
it easy to implement sophisticated protocols and behaviors. Some agent-based

125

DDM systems had been done in the past with successful results, JAM [12] is one
of the most influential. JAM is a distributed, scalable and portable agent-based
data mining system that employs Meta-Learning. For more information about
agent-based DDM, [8] discusses the challenges of agent based DDM, and [14] is
a good survey of DDM that includes agent-based DDM.

A fundamental part of a MAS is the environment where it is deployed. It
is important to adequately model the environment such that the agents can be
able to perceive it, modify it, and exploit it. CArtAgO is an infrastructure and
architecture based on artifacts used for modeling computational environments in
multi-agent systems. With CArtAgO the concept of environment is simplified,
the environment is a set or artifacts.

An artifact is a first order abstraction used for modeling computational envi-
ronments in MAS. Each artifact represents an entity of the environment, offering
services and data structures to the agents in order for them to improve their ac-
tivities, especially the social ones. Artifacts are also of great value in the design
and reutilization of multi-agent systems since their structure is modular, based
on object-oriented concepts. Artifacts are conceived as function-oriented com-
putational devices, functionality that the agents may exploit in order to fulfill
their individual and social activities. The vision proposed by CArtAgO impacts
directly in the agent theories about interaction and activity. Under this vision a
MAS is conceived as a set of agents that develop their activities in three distinct
ways: computing, interacting with other agents and using shared artifacts that
compose the computational environment.

Artifacts can be the objective of the agent activity as well as the tool the
agents use to fulfill their activities, reducing the complexity of their tasks. Since
the environment is composed by artifacts, the state of each artifact can be per-
ceived by the interested agents. The infrastructure of CArtAgO was designed
having in mind distributed environments. It is possible to define work-spaces to
determine the context where an artifact exists and can be perceived and used.
The distributed environment is transparent for the agent, the later is one of
the most valuable characteristics of CArtAgO. In this work, CArtAgO plays an
important role, and is one of the base technologies used to support JaCA-DDM.

3 JaCA-DDM: A Jason Multi-Agent System for DDM

JaCA-DDM (Jason & CArtAgO for DDM) is a Multi-Agent System implemented in
Jason and situated in a CArtAgO environment. JaCA-DDM is used to create and
run distributed learning experiments that are based on the collaborative learning
strategy explained later. Currently it supports J48 decision trees, but it can easily
be extended to support other classification learning approaches. The artifacts
provided by this environment encapsulate data mining tools as implemented by
WEKA[5]. In what follows, the artifacts, agents, and the workflow are described
in detail.

The MAS is composed by a coordinator agent and n workers. There are
three main types of artifacts used by the agents: Oracle, InstancesBase and

126

ClassifierJ48. The coordinator uses the Oracle to extract information about the
learning set and split it among the workers and itself. Each agent stores its
training examples in an InstancesBase artifact. Instances distribution is shown
in figure 2 (page 7). The coordinator induces an initial model with its instances
using ClassifierJ48. Then it asks for contradictory instances as shown in figure
3 (page 8). The interactions amongst the artifacts are shown in figure 1. In what
follows, a more detailed account for each artifact is presented.

Since the main goal of JaCA-DDM is to experiment distributed learning sce-
narios, we are interested in partitioning existing training data sets in a controlled
way to enable comparisons with centralized scenarios. The single Oracle artifact
creates random stratified data partitions and distributes them among the agents.
An agent can use the Oracle artifact to: obtain the attributes information, as
described in the ARFF file; restart the artifact for a new running of the system;
recreate the artifact to run a new round in the cross-validation process; get the
number of instances stored in the artifact; and reinitialize the artifact with a
new training set. The port1 is used to get other artifacts linked with this one.
Usually InstancesBase artifacts are linked via this port to get set of instances.

ClassifierJ48 is a single artifact in charge managing and creating the learn-
ing model. An agent can execute a set of operations (◦) on an instance of this
artifact to: add a new training instance to the artifact; build a J48 classifier
with the instances stored in the artifact; print the tree representation of the
computed classifier; classify an instance; and restart the artifact for running a
new experiment. An agent can also link other artifacts to this one, so that the
linked artifacts can execute linked operations (⋄) on the Classifier48 for: get-
ting the J48 classifier; and classifying an instance. Observe that the artifact is
used to classify instances in two ways: i) An agent executes classifyInstance
over a string representing the instance to be classified, obtaining an integer rep-
resenting the instance class as defined in WEKA; ii) Another artifact executes
classifyInstance to classify an instance stored in that artifact. The port1 is
used to link other artifacts linked to this one. Usually InstancesBase artifacts
are linked via this port to classify instances.

Fig. 1. The main artifacts used in JaCA-DDM

127

InstancesBase is an artifact class implementing local repositories of in-
stances for the agents, so each agent has control of a InstancesBase artifact.
Such an artifact can be linked with an Oracle artifact, via port2, in order to
execute the linked operation givePartition to obtain a set of instances. It can
be also linked to a ClassifierJ48, via port1, in order to search for a contradic-
tion in the local repository and add it to the ClassifierJ48. A contradiction
is an instance wrongly classified by the current model.

Other artifact related to the experimental setting provided by JaCA-DDM in-
clude: the GUI artifact is a front end for launching experiments and setting the
different parameters for the experiment; the Evaluator artifact performs sta-
tistical operations with the results gathered, this operations include standard
deviation, medias and paired T-test.

The collaborative learning strategy proposed has the following characteris-
tics: there exists a central site, in this site the data is controlled by a special
agent known as the coordinator. In this central site a base model is induced
using the instances of the site, this base model serves as the first model that pre-
sumably needs enhancement since it maybe was induced with few instances. The
base model can be shared between the different sites. The coordinator agent also
is in charge of the experiment control, initialization of artifacts, control of the
learning process, and managing the results. In each of the other sites, a worker
agent resides, this agent manages the data of its corresponding site and runs a
process with the purpose of finding contradictions between the base model and
the instances of the site. A contradiction exists when the model does not predict
the instance class correctly. The contradictory instances are sent to the central
site enhancing the base model in a posterior induction. The process repeats itself
until no contradictions are found.

To run the experiments we used a single computer to simulate different dis-
tributed scenarios consisting of various sites, the number of sites is configurable.
Despite using a single computer for the experiments, the system architecture is
flexible, it can also be applied in a true distributed environment without any
major change.

Before an experiment begins, the parameters for the experiment are set
through the GUI, those parameters include: database path, number of worker
agents (in this manner simulating various sites) and type of model evaluation
(hold-out or cross validation with its respective parameters). An experiment has
the following general workflow: first, the coordinator determines which agents
are going to participate in the experiment (currently all the agents participate).
Then the coordinator creates the artifacts needed passing the relevant param-
eters. From there, each agent sends a request to Oracle, asking for its data
partition. The coordinator sends all its examples to ClassifierJ48 in order to
create the base model. Next, the coordinator begins the social process, asking
to each worker, one by one, if it has contradictory examples. If a worker finds a
contradiction, the contradictory example is sent to ClassifierJ48. When a worker
finishes sending all the contradictions, the coordinator may issue an induction
request to ClassifierJ48, the frequency of this induction request can be tuned in

128

order to increase efficiency. This process continues until no more contradictions
are found.

The interaction diagrams presented in figures 2 and 3 (page 8) resume the
most important parts of the workflow described earlier. These figures omit the
InstancesBase artifacts to simplify the diagrams and improve readability. Re-
membering that each agent has an InstancesBase associated for the storage and
administration of its instances. In figure 2 it’s shown the process of data distri-
bution, and in figure 3 shows the learning process.

Fig. 2. Interaction diagram, data distribution

Our current learning strategy is linear in the sense that only one worker
agent at a time searches and sends contradictions. In this aspect, we are not yet
exploiting the concurrent and parallel facilities that the architecture of JaCa-
DDM provides. This is likely to change in future revisions as we enhance our
learning strategy.

4 Experiments and Results

JaCa-DDM was used to create a series of experiments to compare our collab-
orative learning strategy and a traditional centralized strategy. We choose a
comparison against the centralized strategy because it offers a good benchmark
for comparing accuracy and number of training examples used for training the

129

Fig. 3. Interaction diagram, learning strategy

learning model. This comparison takes into account the number of examples used
for training, classification accuracy and time. Since we ran the experiments in a
single computer and not in a distributed system, the time results may not be fair
because the cost of data transmission is not present, nevertheless, for the sake of
completeness we also show time results. A set of databases of the UCI repository
[1] was used (table 1). To distribute the data between the agents a randomized
stratified policy was used, the stratification ensures that each data partition con-
serves the ratio of class distribution. Stratified cross validation with 10 folds and
10 repetitions was applied. For each database, experiments were done with 1,
10, 30, 50 and 100 worker agents. To do the comparison, the same data parti-
tions were used for both strategies. Results of two tailed paired T test with 0.05
degrees of significance are presented to test if there are significant differences

130

between the two strategies, the results of this test are presented in a versus fash-
ion, confronting the collaborative model against the centralized one (CollvsCen
column of thable 3) and the collaborative model against the base model (Col-
lvsBas column of table 3) . Where 0 means no significant difference (a tie), 1
means that the first strategy paired won against the second one, and -1 means
that the first strategy lost against the second one. We used J48 algorithm with
pruning activated and the rest of the WEKA options set to default.

Table 1. Data Sets

Data Set Instances Attributes Classes

adult 48842 15 2
german 1000 21 2
letter 20000 17 26
poker 829201 11 10

waveform 5000 41 3

In table 2 the number of examples used in the centralized model, the base
model (the first model induced with the instances of the central site), and collab-
orative model are presented. In the case of the collaborative model, the standard
deviation is also shown, this is because there are variations in each experiment
(the standard deviation is for 100 experiments). This table shows that our strat-
egy definitely reduces the number of training examples used to induce the model.
This can be seen for example in the results for the adult database (except for
1 worker agent) where only about 35% of the instances where used for training
in our strategy. The standard deviation results show that our strategy is stable
enough.

Table 3 shows the accuracy for the centralized model, base model, and col-
laborative model. This table also shows the results for paired T-test. There are
results of standard deviation in the accuracy because each experiment may vary
since the data is randomized each time. This table shows that our approach main-
tains a similar accuracy when compared with the centralized strategy. Even in
the cases where, according to the paired T-test, our approach loses against the
centralized strategy, the difference is not big (for example the accuracy results
for the poker database), there are significant differences in those cases because
the standard deviation of the centralized strategy is small.

Finally, table 4 shows the mean time in milliseconds of model creation for
the central model and for the collaborative model. The time of the collaborative
strategy includes the time for the base model. From this results it is obvious that
our strategy has its process overhead, this is more noticeable in small databases
like german, nevertheless, as the database grows, the advantages of our strategy
begin to show up, this is specially true for the poker database, where the time
efficiency actually improves. This boost in the time efficiency occurs because
as the data grows it is more efficient to do multiple inductions with a small
amount of data than doing a single induction with a big amount of data. Since

131

our strategy pretends to be applied in scenarios where the amount of data is big,
the results are promising.

As we continue to develop our work, we hope to do a more in depth analysis
about the results and consequences of our collaborative learning strategy. In this
case we limited our analysis to the most noticeable facts.

Table 2. Number of instances used to learn

Data Set Wks Total Centralized Base Collab

adult 1 48842 43957 21978 27468.85 ± 107.53
adult 10 48842 43957 3996 16121.10 ± 147.73
adult 30 48842 43957 1417 15162.07 ± 142.62
adult 50 48842 43957 861 15403.52 ± 163.40
adult 100 48842 43957 435 16063.00 ± 221.61

german 1 1000 900 450 698.20 ± 15.68
german 10 1000 900 81 613.64 ± 13.94
german 30 1000 900 29 614.03 ± 16.20
german 50 1000 900 17 618.74 ± 15.94
german 100 1000 900 8 629.59 ± 16.10

letter 1 20000 18000 9000 11803.68 ± 164.30
letter 10 20000 18000 1636 8349.14 ± 217.90
letter 30 20000 18000 580 8259.17 ± 238.86
letter 50 20000 18000 352 8389.38 ± 227.43
letter 100 20000 18000 178 8628.10 ± 284.24

poker 1 829201 746280 373140 374100.00 ± 14.24
poker 10 829201 746280 67843 71419.50 ± 150.61
poker 30 829201 746280 24073 38988.50 ± 1750.09
poker 50 829201 746280 14632 48773.50 ± 994.89
poker 100 829201 746280 7388 81041.50 ± 1141.97

waveform 1 5000 4500 2250 3836.38 ± 33.40
waveform 10 5000 4500 409 3534.60 ± 34.54
waveform 30 5000 4500 145 3523.18 ± 34.12
waveform 50 5000 4500 88 3543.13 ± 34.50
waveform 100 5000 4500 44 3561.68 ± 37.20

5 Conclusions and Future Work

In this paper we presented JaCa-DDM, an extensible tool that we created and
used to run a series of experiments of DDM. The principles entailed by JaCa-
DDMmake it easy to extend and improve it. This is due to the modular nature of
the system and the fact that agents and artifacts raise the level of abstraction, so
we can think naturally in terms of shared services, communication and workflow.

As the results in the previous section show, our learning strategy is promis-
sory. Our initial expectation of reducing the number of training instances used to

132

Table 3. Accuracy results

Data Set Wks Centralized Base Collab CollvsCen CollvsBas

adult 1 86.00 ± 0.44 85.78 ± 0.48 86.32 ± 0.45 1 1
adult 10 85.97 ± 0.44 84.75 ± 0.57 86.22 ± 0.56 1 1
adult 30 85.99 ± 0.43 83.84 ± 0.73 86.25 ± 0.57 1 1
adult 50 86.02 ± 0.44 83.54 ± 0.89 86.28 ± 0.51 1 1
adult 100 85.98 ± 0.43 82.20 ± 1.58 86.30 ± 0.52 1 1

german 1 72.05 ± 3.73 71.33 ± 4.05 71.82 ± 4.02 0 0
german 10 71.57 ± 3.74 68.38 ± 3.81 71.73 ± 3.78 0 1
german 30 71.83 ± 4.11 68.14 ± 3.89 71.18 ± 4.00 0 1
german 50 71.75 ± 4.0 66.56 ± 5.56 71.51 ± 3.96 0 1
german 100 72.50 ± 3.73 65.36 ± 7.94 71.79 ± 4.09 -1 1

letter 1 87.98 ± 0.76 83.74 ± 0.87 88.18 ± 0.74 1 1
letter 10 88.07 ± 0.70 69.28 ± 1.35 88.26 ± 0.70 1 1
letter 30 87.96 ± 0.80 57.86 ± 1.69 88.23 ± 0.84 1 1
letter 50 88.09 ± 0.73 51.26 ± 2.23 88.26 ± 0.80 1 1
letter 100 88.02 ± 0.67 40.35 ± 3.11 88.26 ± 0.76 1 1

poker 1 99.78 ± 0.01 99.76 ± 0.010 99.79 ± 0.01 0 0
poker 10 99.78 ± 0.01 99.06 ± 0.11 99.74 ± 0.01 -1 0
poker 30 99.79 ± 0.01 96.47 ± 0.25 99.76 ± 0.01 -1 0
poker 50 99.79 ± 0.01 92.22 ± 1.36 99.33 ± 0.02 -1 0
poker 100 99.79 ± 0.01 87.99 ± 0.40 98.99 ± 0.79 -1 1

waveform 1 75.35 ± 1.87 74.77 ± 2.03 75.24 ± 1.75 0 1
waveform 10 75.36 ± 1.99 70.89 ± 2.22 75.08 ± 1.88 0 1
waveform 30 75.35 ± 1.90 67.52 ± 3.03 74.69 ± 2.09 -1 1
waveform 50 75.05 ± 1.74 65.44 ± 3.26 74.85 ± 1.94 0 1
waveform 100 75.21 ± 1.99 62.76 ± 4.54 74.99 ± 2.04 0 1

train the model while conserving the accuracy of a traditional centralized strat-
egy was fulfilled. Now we have the challenge to improve the learning strategy
to enhance efficiency as well as to do a more in depth analysis of the benefits
and consequences of this approach. This analysis has to take into account more
databases with a wide range of characteristics as well as more classification tech-
niques, and not only J48. As it was mentioned earlier, we ran the experiments
in a single computer, simulating various distributed sites. In the future, we hope
to do experiments in a true distributed setting. In this way, we can have a bet-
ter account of time results that will help us to move forward in the efficiency
enhancements that we want to implement.

References

1. K. Bache and M. Lichman. UCI machine learning repository, 2013.
2. Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming multi-

agent systems in AgentSpeak using Jason, volume 8. Wiley-Interscience, 2007.
3. Gauvain Bourgne, Amal El Fallah Segrouchni, and Henry Soldano. SMILE: Sound

multi-agent incremental learning. In Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems, page 38. ACM, 2007.

133

Table 4. Processing time in milliseconds

Data Set Wks Centralized Collab Data Set Wks Centralized Collab

adult 1 1393.97 5913.78 letter 1 795.76 5435.10
adult 10 1419.80 14191.26 letter 10 816.49 17850.55
adult 30 1435.85 15167.84 letter 30 813.13 18120.53
adult 50 1441.34 12626.48 letter 50 826.68 14723.98
adult 100 1465.65 9720.67 letter 100 848.36 11643.36

german 1 10.14 68.16 poker 1 143236.00 180256.00
german 10 7.70 264.52 poker 10 147610.00 120582.00
german 30 6.70 385.76 poker 30 145595.00 53229.00
german 50 6.73 402.97 poker 50 148476.00 54364.50
german 100 6.89 546.88 poker 100 147646.00 54837.00

waveform 1 372.84 3330.27
waveform 10 370.02 9056.13
waveform 30 377.05 9371.32
waveform 50 390.79 6669.84
waveform 100 399.83 6933.90

4. Philip K Chan and Salvatore J Stolfo. On the accuracy of meta-learning for scalable
data mining. Journal of Intelligent Information Systems, 8(1):5–28, 1997.

5. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

6. Andreas Prodromidis, Philip Chan, and Salvatore Stolfo. Meta-learning in dis-
tributed data mining systems: Issues and approaches. Advances in distributed and
parallel knowledge discovery, 3, 2000.

7. Vuda Sreenivasa Rao. Multi agent-based distributed data mining: An overview.
International Journal of Reviews in Computing, 3:83–92, 2009.

8. Vuda Sreenivasa Rao, S Vidyavathi, and G Ramaswamy. Distributed data mining
and agent mining interaction and integration: A novel approach, 2010.

9. Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming
in multi-agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, 2011.

10. Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Construenda est CArtAgO:
Toward an infrastructure for artifacts in MAS. Cybernetics and systems, 2:569–574,
2006.

11. Jimmy Secretan. An Architecture for High-Performance Privacy-Preserving and
Distributed Data Mining. PhD thesis, University of Central Florida Orlando,
Florida, 2009.

12. Salvatore Stolfo, Andreas L Prodromidis, Shelley Tselepis, Wenke Lee, Dave W
Fan, and Philip K Chan. Jam: Java agents for meta-learning over distributed
databases. In Proceedings of the 3rd International Conference on Knowledge Dis-
covery and Data Mining, pages 74–81, 1997.

13. Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

14. Li Zeng, Ling Li, Lian Duan, Kevin Lu, Zhongzhi Shi, Maoguang Wang, Wenjuan
Wu, and Ping Luo. Distributed data mining: a survey. Information Technology
and Management, 13(4):403–409, 2012.

134

A Windowing based GPU optimized
strategy for the induction of Decision

Trees in JaCa-DDM

Xavier Limón a, Alejandro Guerra-Hernández a, Nicandro Cruz-Ramı́rez a,
Héctor-Gabriel Acosta-Mesa a, and Francisco Grimaldo b

a Universidad Veracruzana, Centro de Investigación en Inteligencia Artificial,
Sebastián Camacho No 5, Xalapa, Ver., México 91000

b Universitat de València, Departament d’Informàtica, Avigunda de la
Universitat, s/n, Burjassot-València, España 46100

Abstract. When inducing Decision Trees, Windowing consists in select-

ing a random subset of the available training instances (the window)

to induce a tree, and then enhance it by adding counter examples, i.e.,
instances not covered by the tree, to the window for inducing a new

tree. The process iterates until all instances are well classified or no

accuracy is gained. In favorable domains, the technique is known to
speed up the induction process, and to enhance the accuracy of the in-

duced tree; while reducing the number of training instances used. In this

paper, a Windowing based strategy exploiting an optimized search of
counter examples through the use of GPUs is introduced to cope with

Distributed Data Mining (DDM) scenarios. The strategy is defined and

implemented in JaCa-DDM, a novel system founded on the Agents &
Artifacts paradigm. Our approach is well suited for DDM problems gen-

erating large amounts of training instances. Some experiments in diverse
domains compare our strategy with the traditional centralized approach,

including an exploratory case study on pixel-based segmentation for the

detection of precancerous cervical lesions on colposcopic images.

Keywords. Windowing, Decision Trees, GPU computation, Multi-Agent

Systems, Distributed Data Mining

1. Introduction

The Windowing technique was originally designed to cope with memory limita-
tions in the C4.5 [8] system. It consists in inducing a tree from a small random
subset of the available training instances (the window). The tree is then used to
classify the remaining training instances, searching for counter examples, i.e., in-
stances not covered by the current tree. The window is extended with the counter
examples found and a new tree is induced. The process iterates until a stop cri-
terion is met, e.g., all examples are covered; or the accuracy of the new tree does
not enhance anymore.

135

Windowing is expected to obtain an accuracy similar to that obtained us-
ing all the available training instances, while reducing considerably the number
of examples used to induce a tree. In favorable domains, i.e., free of noise and
indeterminism, it is also expected to speed up the inductive process; but in the
general case, it slows down the process since convergence requires many itera-
tions. Windowing based strategies [4] for Distributed Data Mining (DDM) seems
to inherit these properties: The accuracy of the induced trees is close to, or even
slightly better than that obtained without windowing; The number of examples
used to induce the tree is reduce up to 60%; But the processing time is much
worse when using Windowing, 90 times slower in the worst case.

Searching for counter examples seems to be in part responsible for the poor
time performance of the Windowing based strategies. In this work, CUDA [7] en-
abled GPUs are used to improve the gathering of counter example, seeking a per-
formance improvement of the overall induction processes. Although some frame-
works have been proposed to boost time efficiency of data mining process through
GPUs [12,6], including the induction of Decision Trees [11,5], our work focuses
on DDM scenarios, using JaCa-DDM [4] to further enhance the performance of
the processes and to overcome GPU memory limitations.

JaCa-DDM is an Agents & Artifacts [9] based DDM system, conceived to
design, implement, deploy and evaluate distributed learning strategies. A strategy
is a description of the interactions among a set of agents, exploiting artifacts
deployed in a distributed system, that provide data mining tools. The proposed
strategy concerns the induction of Decision Trees [8], using the J48 algorithm
provided by Weka [14].

The organization of the paper is as follows: Section 2 presents a brief de-
scription of JaCa-DDM, introducing the notions of strategy and deployment sys-
tem. Section 3 describes the implementation of the Windowing based strategy
proposed in this paper, detailing the GPU based optimizations. Section 4 defines
the experimental methodology to evaluate the proposed strategy. The results and
discussion of the experiments are presented in section 5. Finally, this paper closes
with some conclusions and insights of future work in section 6.

2. JaCa-DDM

JaCa-DDM is a system based on the Agents & Artifacts paradigm as implemented
by Jason [3], the well known agent oriented programming language, and CArtAgO
[9], an agent infrastructure to define environments based on the concept of arti-
facts. The main interest of JaCa-DDM is to provide a platform to execute and test
data mining processes over a distributed environment. A novelty of JaCa-DDM
is the way in which the DDM processes are conceived as strategies.

Strategies are descriptions of workflows in terms of agents and artifacts inter-
actions, allowing the implementation of truly sophisticated processes that can ex-
ploit BDI reasoning and representations, as well as speech acts based communica-
tions; while using already existing data mining tools provided by Weka, wrapped
in the form of artifacts. Strategies are by definition encapsulated, allowing stan-
darized ways to define, configure, deploy, and test them.

136

The JaCa-DDM model is built on the concepts of strategy and its deployment.
While a strategy defines a DDM workflow, its deployment deals with configuration
issues.

Definition 2.1 A tuple 〈Ags,Arts, Params, ag1〉 denotes a JaCa-DDM strategy,
where:

• Ags = {ag1, . . . , agn} is the set of user defined Jason agent programs.
• Arts = {art1, . . . , artm} is the set of user defined artifact types.
• Params = {param1 : type1, . . . , paramk : typek, } is a set of paramenters

and their associated data types, where type1,...,k ∈ {int, bool, double, string}.
• ag1 ∈ Ags is a special agent program playing the role of contact person

between the agents in Ags and the deployment system. This agent launches
and finishes the strategy, and can be programmed to do any other task.

Definition 2.2 A tuple 〈Nodes,DS,Arts, Strat, Config, ag0〉 is a JaCa-DDM de-
ployment system, where:

• Nodes = {node0, node1 . . . , nodej}, is a set of computational nodes, usu-
ally, but not necessarily, distributed in a network, where: node0 is run-
ning Jason and CArtAgO, while node1,...,j are running only CArtAgO.
Each node defines a single CArtAgO workspace, where artifacts are to
be created, but all agents run in node0. Each node is denoted by a pair
〈nodeName, IPaddress : port〉.

• DS = {ds1, . . . , dsj} is a set of data sources associated to each node, ex-
cepting node0. Data sources can be created dinamically at run time; or be
statically defined in each node.

• Arts = {art1, . . . , arti} is a set of artifact types, used to deploy the system.
• Strat is a learning strategy as stated in Definition 2.1.
• Config = 〈δ, π〉 is a configuration for a strategy deployment. It has two

components:

∗ δ = {(ag, node, i), . . . }, is a set of allocations, i.e., an agent distribu-
tion specifying how many copies of a given agent program will be fo-
cusing on a given node. Where ag ∈ StratAgs is an agent program in
the strategy, that will be cloned i ≥ 1 times, and assigned to focus on
node ∈ Nodes\{node0}.

∗ π = {(p, v), . . . } is a set of pairs: strategy parameter, initialization value;
where for all param : type ∈ StratParams, p is a parameter of the strat-
egy and v is its value of type t.

• ag0 is the agent setting up the deployment system.

3. Implementation

The implementation of the proposed Windowing based GPU optimized strategy
comprehends a GPU based counter examples filtering processes, and the Parallel
Counter GPU strategy itself.

137

3.1. GPU based counter examples filtering processes

The windowing process can be split into two main subprocess repeated iteratively:
counter examples filtering and model induction. In this work we implement the
filtering of counter examples on GPUs, trying to achieve a negligible time cost
for this subprocess. As mentioned, we do not deal with the induction subprocess,
which allows for other methods to be applied, for example ensemble techniques,
or GPU based induction algorithms.

A decision tree is a directed acyclic graph, where each node has at most one
father. There are two kinds of nodes: internal nodes, and leaf nodes. Internal nodes
represent a given attribute, and leaf nodes class values. Arcs contain a boolean
function over the node attribute values, and each function is mutually exclusive.
There are three kinds of arc functions, each one bound to a boolean operator: ≤,
>, =. The first two operators are for numerical attributes, and the last one for
nominal ones. Given a Decision Tree, and an unclassified instance, a classification
process consist on traversing arcs yielding true values on its function, from the
root node to a leaf node.

On GPUs, it is a good practice to avoid irregular and complex data structures,
in order to improve performance. Scattered memory access is not efficient, and
affects the performance of the GPU cache memories. It is better to read large
blocks of memory in order to exploit coalesced memory access (combining multiple
memory accesses into a single transaction). With these ideas in mind, a plain
representation based on one dimensional arrays was adopted for the GPU Decision
Trees. The structure consists on various properties, some of them are related to
node and arc information:

• int NUM NODES : how many nodes (including leaves) has the tree.
• int MAX NUM ARCS: each node can have a variable number of arcs, but

a constant value is necessary to reserve memory.
• int attributes[NUM NODES]: contains the attribute index for each node.

On the case of a leaf node, it contains the index of the class value.
• int isLeaf[NUM NODES]: a leaf node contains the value 1, otherwise 0.
• int numbersOfArcs [NUM NODES]: the actual number of arcs of each node.
• int NUM ARCS: the sum of all the arcs of all nodes.
• int evalTypes[NUM ARCS]: the evaluation type of the arc: ≤, >, =.
• float vals[NUM ARCS]: evaluation value of the arc.
• int nodeIndices[NUM ARCS]: the index of the node pointed by the arc.

A method that takes a Weka J48 Tree and transforms it to a GPU Decision
Tree was implemented in the J48 artifact. A kernel is a function that executes
on a device (GPU). Kernels are intended to be executed in parallel, receiving
parameters to define the number of threads to be used. The implemented kernels
include:

• classify : Return the index value of the predicted class of an instance.
• searchCounter: Classifies each instance within the instances set in GPU,

and if the predicted class is different from the actual class, then it saves the
index of the instance in an array as big as the instances set. Each thread

138

receives the number of instances that will process. At the end of its work,
each thread also saves the number of counter examples found.

• countSize: Computes a sum over each thread result of the searchCounter
kernel to yield the total number of counter examples found.

• genResult: “Shrinks” the array that contains the counter examples indices
found by the searchCounter kernel, saving the indices on a new array that
is the exact size of the counter examples found.

• filterParallel: Filters the counter examples from the dataset in the GPU.

The workflow of the counter examples filtering process requires to load the
instances set into the GPU at the beginning of the general process. A copy of the
instances set is held in the CPU. It is also necessary to determine the number
of multi-processors, and the maximum number of parallel threads of each multi-
processor, in order to define an ideal number of working threads. The filtering
process, from the host’s (CPU) point of view, can be summarized in the following
steps:

1. Transform the J48 Tree into a GPU Decision Tree.
2. Load the GPU Decision Tree in the GPU.
3. Invoke the searchCounter kernel on the ideal number of threads.
4. Invoke the countSize kernel on one thread.
5. Use the result from countSize to reserve enough memory on the GPU to

save all the counter example indices on an array.
6. Invoke genResult on one thread to fill the array created previously.
7. Invoke filterParallel on the ideal number of threads to erase the counter

examples found from the instances set in the GPU.
8. Use the array with counter examples indices, and filter all the counter

examples in the CPU to obtain a counter examples instance set.
9. Free the memory not needed anymore on the GPU.

Note that the search process on the GPU only finds index values, the ac-
tual filtering is done on the CPU. This design choice was made to reduce data
transmission between the host and the devices.

3.2. Parallel Counter GPU strategy

The proposed strategy consists on an agent bulding an initial Decision Tree with
a subset of its training instances, in a central classifier artifact. Asking to other
agents in the system to gather all the counter examples found in the deployment
system, and sending them to the central classifier artifact for trying to enhance
the Decision Tree. The processes iterates for a number of rounds. Following defi-
nition 2.1, its components are:

• Ags = {contactPerson,worker, roundController}, where:

∗ contactPerson controls the rounds and induces the learned model.
∗ worker gathers counter examples.
∗ roundController determines the stop condition.

• Arts = {ClassifierJ48, InstancesBase,Evaluator}, where:

139

Figure 1. Parallel Counter GPU strategy sequence diagram for counter examples filtering work-

flow. worker i represents any worker, i.e i = 1, ..., j (the same goes for node i). contacPerson1

sends the current model to the InstancesBasei artifact of each workeri. Then it asks all the

workers to search for counter examples in their InstancesBasei using the GPU, and send them

to Classifier1, where a new model is induced.

∗ ClassifierJ48. Induces models.
∗ InstancesBase. Used to store and manipulate the learning examples.

The GPU search is launched on this artifact.
∗ Evaluator. Used to compute the accuracy of a model given a testing set,

for the auto-adjust stop procedure.

• Params include:

∗ Prunning : Bool if true, forces the J48 to use post pruning.
∗ InitPercentage : Double defines the size of the initial training window.
∗ TestPercentageForRounds : Double defines the size of the testing set

for the auto-adjust stop procedure.
∗ ChangeStep : Double defines a threshold of minimum change between

two consecutive rounds. Used by the auto-adjusted stop procedure.
∗ MaxRounds : Int defines the maximum number of rounds.

Figure 1 shows the workflow for one round of the Parallel Counter GPU
strategy. The stop criterion computing is not show for the sake of clarity, but at
the end of every round, the induced Decision Tree is tested to obtain its accuracy
and decide if the process continues or not.

4. Experimental Methodology

A set of datasets were selected to compare the perfomance of the proposed Paral-
lel Counter GPU strategy with the usual centralized approach. The measured pa-
rameters for all the experiments are the following: accuracy, percentage of training
examples used, time in seconds, number of leaves, and tree size. The experiments
were executed on a cluster consisting of three computers with the same charac-
teristics: Two Xeon processors at 2.40 GHz with four cores, and two threads each;
24 GB of RAM; Two GPU Nvidia Tesla C2050.

140

Table 1 shows some datasets used for this purpose. They were selected from
the MOA [2] and TunedIT [15] projects, because they vary in the number of
instances, attributes, and classes. Evaluation was done with a 10-fold stratified
cross validation, and also the training instances were stratified and split evenly
among the 3 computer nodes.

Table 1. Used MOA/TunedIT datasets.

DS #Instances #Attributes #Classes

airlines 539383 8 2

covtypeNorm 581012 55 7

KDDCup99 4898431 42 23

poker-lsn 829201 11 10

Strategy distribution δ was {(contactPerson, node1, 1), (roundController,
node1, 1), (worker, node1, 1), (worker, node2, 1), (worker, node3, 1)}. The parame-
ters initialization π for all datasets was {(Pruning, true), (InitPercentage, 0.15),
T estPercentageForRounds, 0.15), (ChangeStep, 0.004), (MaxRounds, 10)}. The
InitPercentage and TestPercentageForRounds parameters only take data from
one node, and each node has one third of the training data, thus the parameter
value considers this fact. On the centralized case, pruning was also active.

An exploratory case study for pixel-based segmentation was also considered.
Pixel-based segmentation consists on extracting features from labeled pixels to
create a training dataset, which is used to construct a model to predict the class
of unseen pixels, and in this way achieve image segmentation [13]. Our case study
deals with sequences of colposcopic images presenting possible precancerous cer-
vical lesions. The image data was extracted from 38 patients, for each patient
a range between 300 and 600 images were obtained. A medical expert labeled
some of the pixels of each image (figure 2 shows an example), from which two
classes can be drawn: precancerous lesion, and no precancerous lesion. For a more
detailed account of this case study see [1]. From the images for each patient, we
selected 30 images evenly spread in the series. Using FIJI [10] we extracted the
pixels of interest from the images to create a Weka ARFF file, selecting the de-
fault pixel parameters: gaussian blur, sobel filter, hessian, membrane projections,
and difference of gaussians. The obtained dataset has the following characteris-
tics: Total number of examples: 1016600; No precancerous lesions: 213819; Pre-
cancerous lesions: 802781; Number of attributes: 80. We compare our strategy
with the centralized approach using leave-one-out, where the test data in each
case is the extracted pixels from a single patient. For our strategy, the training
data was stratified and evenly split in our 3 computers available. The distribution
δ and parameters π of the Parallel Counter GPU was the same as in the general
experiments. It is worth mentioning that we did not apply any preprossessing to
the dataset, being an exploratory experiment, we are more interested in testing
the behavior of our approach in this kind of setting.

5. Results and discussion

Table 2 shows the results obtained by our strategy and the centralized approach
for the MOA/TunedIT datasets. As expected, accuracy is similar in all cases, and

141

Figure 2. Example of colposcopic image. Black dots represent pixels labeled by a medical expert.

our strategy reduced the number of examples used for training up to a 90%. The
number of leaves and tree size are also reduced by our strategy in all cases. GPU
based counter examples filtering speed up the whole process. For KDDCup99
and poker-lsn, our approach is up to 8 times faster than the centralized one. For
airlines and covtypeNorm, in the wort case, our approach is 0.78 times slower
than the centralized. This enhances considerably the results of the Windowing
based strategies previously reported by Limón [4], where such strategies were up
to 200 times slower than the centralized approach.

The rate of instances used to induce a Decision Tree is indicative of how dif-
ficult is for the strategy to converge. Higher rates suggest that the strategy iter-
ates more times, inducing more trees, and using more instances before attaining
convergence. Interestingly, in these and previous experiments, the rate of used
instances seems to correlate with the accuracy: Low accuracy demands more in-
stances, while high accuracies demands much fewer instances. In these cases, the
GPU based counter example fintering is not responsible of the decreased time
performance, but the number of iterations executed by the strategy. The airlines
dataset shows an extreme case in this regard, the overall problem is too difficult
for the J48 algorithm.

In the observation of the evolution of the learning process of covtypeNorm
we found that the majority of examples used for learning were found during the
fist search of counter examples. This means that the initial model was too simple,
and adding all the counter examples found could not be the best choice in the
long run. Possibly, increasing the size of the initial training set, and/or further
filtering counter examples on initial phases of the process, would help to obtain
a better time performance.

Table 2. Results for the MOA/TunedIT datasets.

DS Strategy Accuracy Used instances Time (seconds) #Leaves Tree Size

airlines Centralized 66.34 ± 0.11 100.00 ± 0.00 1164.66 ± 211.76 137470 142081

airlines Parallel Counter 66.26 ± 0.12 94.95 ± 0.01 1810.78 ± 446.47 132767 137210

covtypeNorm Centralized 94.59 ± 0.04 100.00 ± 0.00 855.41 ± 97.88 14158 28314

covtypeNorm Parallel Counter 93.10 ± 0.34 48.44 ± 0.01 1089.03 ± 277.06 12679 25265

KDDCup99 Centralized 99.99 ± 0.01 100.00 ± 0.00 1688.91 ± 363.89 968 1147

KDDCup99 Parallel Counter 99.96 ± 0.01 9.28 ± 0.01 199.72 ± 45.62 667 855

poker-lsn Centralized 99.78 ± 0.01 100.00 ± 0.00 174.26 ± 28.55 2212 4408

poker-lsn Parallel Counter 98.67 ± 0.46 9.56 ± 0.01 24.90 ± 8.05 1831 3552

For the pixel-based segmentation case study, Table 3 shows a comparison of
the results obtained by our strategy, the centralized approach, and the results

142

reported in [1]. The sensibility (Sen) is the rate of true positive observations
(precancerous lesion) against the sum of true positive plus false negatives, and the
specificity (Spe) is the rate of true negative (no precancerous lesion) observations
against the sum of true negative plus false positives.

Observe that the results are similar to those obtained for the covtypenorm
dataset, with similar explanations. Anyway, observe that the proposed approach
obtained a similar accuracy and sensibility than the results reported by Acosta-
Mesa et al. [1], where a time series approach was adopted, and other normaliza-
tions were applied, that yielded a more balanced dataset, which in turns explains
the difference in specificity that we obtained. Our experiment was done with a
unbalanced dataset with no preprocessing applied (as this is an exploratory case
study), favoring the precancerous lesion class, which also may explain our im-
provement in sensibility. Being identified the probable cause of no time perfor-
mance improvement in our strategy (i.e too many counter examples are added
on the first round), and given the results obtained, we are optimistic that with
a proper preprossessing of the dataset, and with an enhancement of our current
strategy, we can achieve much better results.

Table 3. Results for the case study

Strategy Accuracy Used instances Time (seconds) #Leaves Tree Size Sen Spe

Centralized 66.32 ± 29.50 100.00 ± 0.00 4806.50 ± 455.28 32436 64871 79.04 18.53

Parallel Counter 65.87 ± 26.89 46.80 ± 0.02 6317.36 ± 605.46 30633 61265 77.73 21.37

Results from [1] 67.00 n/a n/a n/a n/a 71.00 59.00

6. Conclusions and future work

The Windowing based GPU optimized strategy proposed in this work demon-
strates that Windowing based approaches can be applied to large datasets, having
clear time performance improvements in some cases, in comparison with the cen-
tralized approach, while preserving a similar accuracy. Even on no favorable cases,
our strategy was acceptably slower, and always reduced the number of leaves and
tree size by using less counter examples. We believe that the time performance
that our strategy can achieve is bound by two factors: i) The complexity of the
problem represented by the dataset; and ii) The dataset redundancy. The first
factor is an open problem, and for the time being, we do not plan to direct our
efforts toward it, while the second factor is of interest for our future work. In
practical terms, redundancy means that some examples from the dataset are not
needed for the learning process, and that discarding such examples is paramount
to improve time performance. We plan to so research on the nature of redun-
dancy on tree model induction to create an improved version of the Windowing
algorithm that further filters redundant examples.

References

[1] Héctor-Gabriel Acosta-Mesa, Nicandro Cruz-Ramı́rez, and Rodolfo Hernández-Jiménez.
Aceto-white temporal pattern classification using k-nn to identify precancerous cervical

lesion in colposcopic images. Computers in biology and medicine, 39(9):778–784, 2009.

143

[2] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive

online analysis. The Journal of Machine Learning Research, 11:1601–1604, 2010.
[3] Rafael H. Bordini, Jomi F. Hübner, and Mike Wooldridge. Programming Multi-Agent

Systems in Agent-Speak using Jason. John Wiley & Sons Ltd, 2007.

[4] Xavier Limón, Alejandro Guerra-Hernández, Nicandro Cruz-Ramı́rez, and Francisco
Grimaldo. An agents & artifacts approach to distributed data mining. In F. Castro,

Alexander Gelbukh, and M. G Mendoza, editors, 11th MICAI, volume 8266 of LNAI,

pages 338–349, Berlin Heidelberg, 2013. Springer Verlag.
[5] Win-Tsung Lo, Yue-Shan Chang, Ruey-Kai Sheu, Chun-Chieh Chiu, and Shyan-Ming

Yuan. Cudt: a cuda based decision tree algorithm. The Scientific World Journal, 2014,

2014.
[6] Wenjing Ma and Gagan Agrawal. A translation system for enabling data mining appli-

cations on gpus. In Proceedings of the 23rd international conference on Supercomputing,

pages 400–409. ACM, 2009.
[7] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel program-

ming with cuda. Queue, 6(2):40–53, 2008.

[8] John Ross Quinlan. C4. 5: programs for machine learning, volume 1. Morgan kaufmann,
1993.

[9] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming in multi-
agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Sys-

tems, 23(2):158–192, 2011.

[10] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Lon-
gair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin

Schmid, et al. Fiji: an open-source platform for biological-image analysis. Nature methods,

9(7):676–682, 2012.
[11] Toby Sharp. Implementing decision trees and forests on a gpu. In Computer Vision–ECCV

2008, pages 595–608. Springer, 2008.

[12] Nam-Luc Tran, Quentin Dugauthier, and Sabri Skhiri. A distributed data mining frame-
work accelerated with graphics processing units. In Cloud Computing and Big Data

(CloudCom-Asia), 2013 International Conference on, pages 366–372. IEEE, 2013.

[13] Xiang-Yang Wang, Xian-Jin Zhang, Hong-Ying Yang, and Juan Bu. A pixel-based color
image segmentation using support vector machine and fuzzy c-means. Neural Networks,

33:148–159, 2012.
[14] Ian H. Witten and Eibe Frank. Data mining: Practical machine learning tools and tech-

niques. Morgan Kaufmann, San Francisco, CA., USA, second edition, 2005.

[15] Marcin Wojnarski, Sebastian Stawicki, and Piotr Wojnarowski. TunedIT.org: System for
automated evaluation of algorithms in repeatable experiments. In Rough Sets and Current

Trends in Computing (RSCTC), volume 6086 of Lecture Notes in Artificial Intelligence

(LNAI), pages 20–29. Springer, 2010.

144

1

Pattern Recognition Letters
journal homepage: www.elsevier.com

A Windowing strategy for Distributed Data Mining optimized through GPUs

Xavier Limóna,∗∗, Alejandro Guerra-Hernándeza, Nicandro Cruz-Ramı́reza, Héctor-Gabriel Acosta-Mesaa, Francisco Grimaldob

aUniversidad Veracruzana, Centro de Investigación en Inteligencia Artificial, Sebastián Camacho No 5, Xalapa, Ver., México 91000
bUniversitat de València, Departament d’Informàtica, Avigunda de la Universitat, s/n, Burjassot-València, España 46100

ABSTRACT

This paper introduces an optimized Windowing based strategy for inducing decision trees in Dis-
tributed Data Mining scenarios. Windowing consists in selecting a sample of the available training
examples (the window) to induce a decision tree with an usual algorithm, e.g., J48; finding instances
not covered by this tree (counter examples) in the remaining training examples, adding them to the
window to induce a new tree; and repeating until a termination criterion is met. In this way, the num-
ber of training examples required to induce the tree is reduced considerably, while maintaining the
expected accuracy levels; which is paid in terms of time performance. Our proposed enhancements
solve this by searching for counter examples on GPUs and further reducing their number in the win-
dow. The resulting strategy is implemented in JaCa-DDM, our agents & artifacts tool for Distributed
Data Mining, keeping the benefits of Windowing, while distributing the process and being faster than
the traditional centralized approach, even performing similarly to Bagging and Random Forests in
some cases. Experiments in data mining tasks are addressed, including a case study on pixel-based
segmentation for the detection of precancerous cervical lesions on medical images.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed Data Mining (DDM) scenarios involve large
amounts of data scattered in different sites, e.g., internet based
databases and data streams for meteorology, oceanography,
economy, etc; geographically distributed information systems;
sensor networks; and grids. While traditional Data Mining ap-
proaches require collecting all data in a single site, this is usu-
ally inefficient or infeasible due to storage, communication, and
computational costs, as well as privacy issues (Tsoumakas and
Vlahavas, 2009). Agent Mining (Cao et al., 2012) has aroused
as an option to cope with such scenarios, because of the dis-
tributed nature and inherent advantages of Multi-Agent Sys-
tems (MAS): autonomy, flexibility, robustness, and scalabil-
ity (Moemeng et al., 2009). Numerous Agent Mining systems
and framework have been proposed, including: JAM (Stolfo
et al., 1997), BODHI (Kargupta et al., 1999), Papyrus (Bailey
et al., 1999), GLS (Zhong et al., 2002), EMADS (Albashiri and
Coenen, 2009), i-Analyst (Moemeng et al., 2010), SMAJL (Xu
et al., 2014).

∗∗Corresponding author: Tel.: +52-228-817-2957;
e-mail: xavier120@hotmail.com (Xavier Limón)

This work introduces an optimized Agent Mining method,
based on Windowing (Quinlan, 1993), to induce decision trees.
Windowing was proposed to cope with memory limitations
when using the inductive algorithm C4.5. It consists in select-
ing a sample of the available training examples (the window) to
induce a decision tree; finding instances not covered by this tree
in the remaining training examples (counter examples); adding
them to the window to induce a new tree; and then, repeating the
process until a stop criterion is met. Windowing yields models
with an accuracy similar to C4.5, using all the available train-
ing examples in a single site; but reducing significantly their
number, since consistent examples are filtered out. However,
given its iterative nature, Windowing did not show good time
performance. Two enhancements are proposed to solve this: i)
Optimizing the search for counter examples through the use of
GPUs, and ii) Reducing the size of the window even further.

The proposed method, called Parallel Counter GPU Extra,
is modeled and implemented as a strategy for JaCa-DDM, our
own Agent Mining system founded on the Agents & Artifacts
paradigm (Omicini et al., 2008). A strategy in this context, is
a workflow described in terms of the interactions among agents
using standard Data Mining tools, distributed in a computer net-
work as artifacts. JaCa-DDM consolidates the Agent Mining

145

2

concept by adopting an Agent & Artifacts approach that pro-
vides the right level of abstraction and flexibility for modeling,
implementing, and deploying DDM workflows, while reusing
standard Data Mining tools for this.

Agent Mining apart, different enhancements of the inductive
algorithms themselves have been proposed for learning deci-
sion trees from large and distributed datasets, including:

• Bagging (Breiman, 1996) is an ensemble technique, where
a set of learning models of the same type are induced from
separate training datasets for the same problem. These
models are gathered at a single place, and used for classi-
fication, following a majority vote scheme. Bagging uses
a bootstrap sampling, where a single dataset of size n is
used to produce m datasets of size n′ by applying random
sampling with replacement, obtaining then m models. For
large n, when n = n′, it is expected that each dataset keeps
≈ 63.2% of unique training examples. Generally, the more
training datasets, the better the results, since this reduces
the variance of the method (Witten and Frank, 2005).

• Random Forest (Breiman, 2001) is a variant of Bagging,
resulting in a set of decision trees, induced from bootstrap
samples. Each tree induction is boosted by randomly sam-
pling the attribute vector for each node split, based on a pa-
rameter K, determining the number of attributes taken into
account at each node split. This makes possible to process
datasets with a large numbers of attributes. Small K values
are recommended, e.g., log2(|attributes|)+1. Map-Reduce
extensions (Genuer et al., 2015) apply a careful subsam-
pling, in order to avoid sampling bias, but this is difficult
in distributed scenarios where sites are naturally biased.
Windowing may be useful as a sampling method, purpose-
fully trying to skew the training example distribution, by
considering only the counter examples found while learn-
ing (Fürnkranz, 1998). Since Windowing samples while
the model is learned, no extra sampling step is needed.

• Incremental decision trees, such as VFDT (Domingos and
Hulten, 2000), ICE (Yoon et al., 1999), and BOAT (Gehrke
et al., 1999) are able to update the learned model in the
presence of new training examples. Model updating is of-
ten very fast and memory usage is also optimized, since
only a small sample of training examples needs to be
loaded. Some of them, e.g., VFDT, are sensitive to the
order of arrival of the training examples, since nodes can
not be completely rearranged once created (Nguyen et al.,
2014). They enable DDM strategies that exchange models
instead of training examples.

• Inducing decision trees from distributed heterogeneous
data (Chawla et al., 2003; Mehenni and Moussaoui, 2012),
i.e., data exhibiting vertical partitions. Although the dis-
cussed strategies do not apply for vertical partitioned data,
there is evidence (Melgoza-Gutiérrez et al., 2014) that
JaCa-DDM can be used in such cases, when inducing de-
cision trees.

• Related to GPUs, there are efforts to induce decision trees
using GPUs (Lo et al., 2014; Sharp, 2008); and different

frameworks that try to boost time efficiency of Data Min-
ing process through GPUs have been proposed (Ma and
Agrawal, 2009; Tran et al., 2013), but distributed settings
have not been considered. Using JaCa-DDM further en-
hances the performance of the processes and helps to over-
come GPU memory limitations.

In what follows, the adopted methods and tools are described
in detail in Section 2. Two experimental settings are used to
evaluate the proposed strategy, comparing it with the central-
ized use of the inductive algorithm, a previously proposed strat-
egy (Parallel Counter GPU), and JaCa-DDM strategies based
on VFDT, Bagging, and Random Forest. The first setting uses
some datasets from well known repositories; the second one is
a pattern recognition case study, based on pixel-based image
segmentation for the identification of precancerous cervical le-
sions on colposcopy images. These settings are introduced in
Section 3. Results are analyzed and discussed in Section 4.
Conclusions are drawn in Section 5.

2. Methods and tools

Although the methods adopted in this work can be imple-
mented in different ways, all of them have been actually con-
ceived as strategies for JaCa-DDM (Limón et al., 2013, 2015).
Our Agent Mining system is briefly introduced for those inter-
ested in exploring the discussed strategies, as included in the
JaCa-DDM 1 distribution. Then, the Windowing method and
the proposed enhancements are described in detail. Finally, the
definition of the resulting Parallel Counter GPU Extra strategy
is introduced.

2.1. JaCa-DDM

JaCa-DDM is an Agent Mining system founded on the
Agents & Artifacts paradigm, conceived to design, implement,
deploy, and evaluate DDM strategies. Jason (Bordini et al.,
2007), a known Agent Oriented Programming language, is used
to implement different strategies to cope with distributed com-
puter environments in terms of rational agents and their in-
teractions. CArtAgO (Ricci et al., 2011) artifacts encapsu-
late Weka (Witten and Frank, 2005) learning algorithms, data
sources, evaluation tools, and other resources usually employed
by the agents in such tasks.

Strategies make use of the Belief-Desire-Intention (BDI) rea-
soning and representation provided by Jason, as well as the
agent communication based on speech-acts. Agents can cre-
ate, perceive, and use the Weka artifacts in their environment;
coordinating themselves in a workflow. A JaCa-DDM model,
based on the concepts of strategy and deployment, is proposed
to allow canonical ways to create and deploy different strate-
gies. A tuple 〈Ags, Arts, Params, ag1〉 denotes the elements of
a strategy, where:

• Ags = {ag1, . . . , agn} is a set of user defined agent types.

1Available at http://jacaddm.sourceforge.net

146

3

• Arts = {art1, . . . , artm} is a set of user defined artifact
types, used to support Data Mining related tasks.

• Params = {param1 : type1, . . . , paramk : typek, } is a
set of parameters and their associated data types, where
type1,...,k ∈ {int, bool, double, string}.

• ag1 ∈ Ags is a special agent program playing the role of
contact person between the agents in Ags and the deploy-
ment system. This agent launches and finishes the strategy,
and can be programmed to do any other task.

Observe that these elements are required for all the strate-
gies defined in JaCa-DDM. The specific workflow contained
in a strategy, i.e., the way the agents learn together using
their artifacts, is encapsulated in the agent programs. The
workflow for the proposed strategy is described with the
help of UML-like interaction diagrams in Section 2.3. A
tuple 〈Nodes,DS , Arts, S trat,Con f ig, ag0〉 denotes a JaCa-
DDM deployment specification, where:

• Nodes = {node0, node1 . . . , node j}, is a set of compu-
tational nodes, usually, but not necessarily, distributed
in a network. Each node defines a single CArtAgO
workspace, where artifacts are to be executed, but all
agents run in node0. Each node is identified by a pair
〈nodei=0,..., j, IPaddress : Port〉.

• DS = {ds1, . . . , ds j} is a set of data sources associated
to each node, not including node0. Data sources can be
created dinamically at run time; or be statically defined in
each node.

• Arts = {art1, . . . , arti} is a set of artifact types, used to
deploy the system.

• S trat is a learning strategy as introduced before.

• Con f ig = 〈δ, π〉 is a configuration for a strategy deploy-
ment. It has two components:

– δ = {(ag, node, i), . . . }, is a set of allocations, denot-
ing that i copies of the agent ag ∈ S tratAgs will focus
on a given node ∈ Nodes. Focusing here, means an
agent can perceive and act on artifacts via Java RMI.

– π = {(param, val), . . . } is a set of parameters initial-
ization for all param : type ∈ S tratParams, where val
is a specific value of the given type.

• ag0 is the agent setting up the deployment.

Given XML definitions of a strategy and its deployment spec-
ification, JaCa-DDM executes the associated workflow in the
available computational infrastructure. The decision of running
all the agents in node0 optimizes communication costs, while
the demanding computational processes in the workflow, as in-
ducing models, classifying instances, searching for counter ex-
amples, etc., are truly distributed using the artifacts.

2.2. Enhancing the Windowing method

The Algorithm 2.1 describes the basic Windowing method.
Although the stopping condition may vary, the traditional crite-
rion is to stop when no more counter examples are found.

Algorithm 2.1. The basic Windowing algorithm.
1: function Windowing(Exs)
2: Window← sample(Exs)
3: Exs← Exs −Window
4: repeat
5: stopCond ← true
6: model← induce(Window)
7: for ex ∈ Exs do
8: if classi f y(model, ex) , class(ex) then
9: Window← Window ∪ {ex}

10: Exs← Exs − {ex}
11: stopCond ← f alse
12: until stopCond
13: return model

Windowing was criticized because the learned models were
not only unable to significantly outperform the traditional
centralized approaches, but an extra computational cost re-
sulted of the search for counter examples. Nevertheless, the
method can achieve significant run-time gains in noise-free do-
mains (Fürnkranz, 1998) and reduces significantly the number
of training examples used to induce the models.

The Algorithm 2.1, involves two main subprocesses repeated
iteratively: the model induction (Line 6); and the search for
counter examples (Lines 7–11). We have found that, when large
amounts of data are involved, reducing the number of examples
used in the induction can potentially boost time performance,
even if the process is repeated iteratively; but, for this to hap-
pen, the searching for counter examples must also be acceler-
ated using GPUs.

2.2.1. Enhancing the inductive process
There are two ways of improving the time performance of

the inductive process: altering the inductive algorithm itself as
discussed in the introduction, e.g., using parallel computing,
incremental computing, GPU boosting, etc.; and keeping the
size of the window as small as possible. The second approach
is adopted here, while the first one is considered for future work.

The proposed enhancement exploits the fact that some
counter examples seem redundant in the following sense: sup-
pose a decision tree is computed with a given window and the
remaining set of training examples are classified as shown in
Fig. 1. In order to enhance such a tree, Windowing adds all
the counter examples to the window to execute a new induc-
tive process. This happens in all the leaves of the tree. Now, if
two counter examples reach the same leaf when classified, they
are alike in the sense that they were misclassified for similar
reasons, i.e., their attributes values are similar.

Since smaller windows mean faster inductions, we hypoth-
esize that it is unnecessary to add all the alike counter exam-
ples to the window at once, in order to obtain the desired accu-
racy levels, faster. Three parameters are proposed to control the

147

4

+ + + +
+ + + - -

- - -
Correctly classified

examples Alike counter
examples

Fig. 1. Alike counter examples (-) are those that reached the same leaf when
classified. Correctly classified examples (+) are not considered in the iter-
ation, while some alike counter examples are added to the window in each
iteration.

number of alike counter examples being added to the window
in each iteration:

• µ defines the percentage of randomly selected counter ex-
amples per leaf to be added to the window;

• ∆ defines a percentage increment of µ, applied at each it-
eration and;

• γ defines the minimun number of examples per leaf, re-
quired to apply any filtering at all.

With these parameters, the function to know how many
counter examples are sampled for each tree node in any given
iteration is the following:

keep(C, i) =


|C| If |C| < γ ∨ µ + incr(µ) ≥ 1
|C| × (µ + incr(µ)) Otherwise

Where: C is a set of counter examples in a given node; i the
current iteration starting at 0; and incr(µ) = i × ∆. On the first
rounds of Windowing, the sets of alike counter examples tend
to be big; as the model improves and more leaves are created,
these sets become smaller. Given these observations, parame-
ters are set to discard more counter examples at the beginning
of the process, and discard less counter examples as Window-
ing progresses. The method is implemented in GPUs as a part
of the parallel search of counter examples.

2.2.2. Enhancing the searching for counter examples process
The searching for counter examples is accelerated using

GPUs, in order to achieve a negligible time cost for this pro-
cess. This enhancement requires representing the decision trees
and the training examples in data structures well suited for
CUDA (Nickolls et al., 2008), as well as implementing the cor-
responding classification and filtering algorithms as kernels.

Decision trees have two kinds of nodes: internal and leaf
nodes. Internal nodes represent attributes and leaf nodes, class
values. Arcs represent a boolean function over the attribute val-
ues, and each function over the same node is mutually exclu-
sive. There are three kinds of arc functions, each of them bound
to the boolean operators: ≤, >, =. The first two are for numer-
ical attributes, and the last for nominal ones. Given a decision

tree, and an unclassified instance, a classification process con-
sist of traversing arcs yielding true values on its function, from
the root to a leaf.

When using GPUs, it is good practice to avoid irregular and
complex data structures. Scattered memory access is not ef-
ficient and affects the performance of the GPU cache mem-
ories. It is better to read large blocks of memory in order
to exploit coalesced memory access, i.e., combining multiple
memory accesses into a single transaction. With these ideas in
mind, a plain representation based on one dimensional arrays
was adopted. The structure consists on various arrays, related
to node and arc information, that make possible to traverse the
tree in order to do classifications in an efficient way.

A variety of CUDA kernels were implemented to support dif-
ferent tasks such as classification, counter examples filtering,
counter examples reduction, etc.

Training examples are represented in the GPU as numeric ar-
rays of size n, where each index 0, . . . , n−1 represents the value
of the attribute with the same index. The last element of the ar-
ray represents the class value. The searching for counter exam-
ples process requires to load the training examples into the GPU
at the beginning of the Windowing process. A copy of them is
held in the CPU. It is also necessary to determine the number of
multi-processors, and the maximum number of parallel threads
of each multi-processor, in order to define an ideal number of
working threads. The filtering process is summarized in Fig. 2.

Transform

Parallel Search of
Counter Examples

Counter Examples
Reduction

Filtering Counter
Examples

J48 Weka
Classifier

Counter
examples

Decision Tree for GPU

Counter Examples
Indexes

G
PU

C
PU

Add Examples to
the Window

Fig. 2. Counter examples searching executed at each Windowing iteration.

Note that the search process on the GPU only finds index
values, the actual filtering is done on the CPU. This design
choice was made to reduce data transmission between the CPU
and the GPU, and thus improve performance for large datasets.
The enhancements to the inductive process and the searching
for counter examples are implemented as part of the Parallel
Counter GPU Extra strategy, defined as follows.

2.3. Parallel Counter GPU Extra strategy

The extra in the proposed strategy is due to the control in the
number of counter examples aggregated to the window, addi-
tional to the GPU search for counter examples previously pro-
posed as Parallel Counter GPU (Limón et al., 2015). Following

148

5

contactPerson_1

Classifier_1 InstanceBase_i

worker_i

par worker_i
sendModelTo(InstanceBase_i)

+done

!search_send_counter(Classifier_1)
filter(Classifier_1)

+done

induce()

node 1 node i

?allDone

?allDone

+ready

+ready

model

model

+ready

counterExs

counterExs

Fig. 3. Parallel Counter GPU Extra strategy sequence diagram for the counter examples filtering workflow.

the JaCa-DDM model, the proposed strategy has the following
components:

• Ags = {contactPerson,worker, roundController}, where:

– contactPerson controls the process and induces the
learned model.

– worker gathers counter examples in each distributed
node.

– roundController evaluates the termination criterion.

• Arts = {Classi f ier, InstancesBase, Evaluator}, where:

– Classi f ier. It is a Weka J48 classifier, extended with
GPU capabilities. It is used for inducing decision
trees.

– InstancesBase. It is a Weka instances base used to
store and manipulate training examples. It is also
extended with GPU capabilities.

– Evaluator. It used to compute the accuracy of a
given model, with a set of reserved training exam-
ples.

• Params include:

– Prunning : Bool defines if post pruning is to be used.

– WindowInitPerc : Double defines the size of the ini-
tial window, as a percentage of the available training
examples.

– S topTestS etPerc : Double defines the size of the
validation set used for computing the termination cri-
terion, as a percentage of the available training exam-
ples.

– AccuracyThr : Double defines a threshold of mini-
mum acceptable accuracy change between two con-
secutive rounds. Used by the termination criterion.

– MaxRounds : Int defines the maximum number of
rounds of the process. It subsumes the termination
criterion.

– µ : Double defines the initial percentage of counter
examples to be collected per leaf, as described be-
fore.

– ∆ : Double defines an increment percentage for µ
applied at each iteration, as described before.

– γ : Int defines the minimum number of counter ex-
amples needed in a leaf to apply filtering, as describe
before.

The resulting workflow for one iteration of the process is
shown in Fig. 3, using a UML-like notation. Dotted boxes rep-
resent different nodes in the system. Regular boxes represent
artifacts. An arrow from an agent to an artifact denotes an op-
eration being executed by the agent on that artifact. An arrow
from an agent to an agent denotes a speech act, e.g., achieve
something (!) or tell something (+).

The agent contactPerson 1 builds a decision tree using
Classi f ier 1 with a subset of the available training examples,
i.e., the initial window, and sends the resulting model to the
instances base artifacts of each worker. Once this is done,
contactPerson 1 asks the workers to search for counter exam-
ples and send them to the Classi f ier 1 artifact. This search-
ing process is GPU optimized as described before. Once the
counter examples are collected, each worker agent sends them
to the classifier artifact, in order to enhance the current decision
tree with a new induction over the extended window. The pro-
cess iterates until the termination criterion is met: determining,
for a pair of rounds, if the obtained accuracy computed over a
validation set, is better enough in the second round. For the
sake of clarity, some parts of the process are not shown, includ-
ing this halt condition, and the initial model induction.

149

6

3. Experiments

Two experimental settings were adopted for testing the appli-
cability of the proposed strategy, one based on known datasets
and another based on a pattern recognition case study: pixel-
based segmentation of images for the detection of possible pre-
cancerous cervical lesions.

All the experiments evaluate and compare the accuracy of
the obtained models, as well as the number of training exam-
ples used in the process, the run-time measured in seconds, the
complexity of the models (number of leaves and tree size), and
the resulting confusion matrix. All the experiments were exe-
cuted on a cluster of three nodes with the same characteristics:

• Two Xeon processors at 2.40 GHz with four cores, and
two threads each.

• 24 GB of RAM.

• One CUDA enabled Nvidia Tesla C2050 GPU with 448
cores and 6 GB of memory.

The Parallel Counter GPU Extra strategy is compared with
other strategies with different purposes. It is compared with:
Parallel Counter GPU (Limón et al., 2015) to evaluate the ef-
fects of the extra filtering of counter examples; Weka Central-
ized for comparison with the traditional use of the data mining
tool; Centralizing VFDT for comparison with a full centraliza-
tion approach based on incremental induction; and Bagging and
Random Forest for comparison with meta-learning approaches.
It is worth noting that all the strategies were implemented using
JaCa-DDM.

Centralizing VFDT gathers all the training examples scat-
tered in the distributed nodes; and then induce a decision tree
using the VDFT algorithm, as implemented in MOA (Bifet
et al., 2010). The Bagging strategy is based on J48 pruned mod-
els, as provided by Weka. In each distributed node, 16 models
are created in parallel from bootstrap samples of the local data.
The Random Forest strategy runs on the same basis as Bagging,
using log2(|attributes|)+1 as the K value for randomly selecting
attributes in each node split.

3.1. Case study 1: known datasets

Four representative datasets from the UCI repository (Lich-
man, 2013), as adapted by the MOA (Bifet et al., 2010) and
TunedIT (Wojnarski et al., 2010) projects, were selected:

• airlines. A dataset to predict flight delays from the infor-
mation of the scheduled departure.

• covtypeNorm. A dataset containing the forest cover type
for 30 x 30 meter cells obtained from US Forest Service.

• KDDCup99. A dataset to built a predictive model capable
of distinguishing between bad connections, intrusions or
attacks, and good normal connections.

• poker-lsn. A dataset containing examples of poker and no
poker hands drawn from a standard deck of 52 cards.

The datasets properties are shown in Table 1. Parameters (π)
and agent distribution (δ) are configured as shown in Table 2,
for all the experiments. A 10-fold stratified cross validation
is adopted, i.e., preserving class value ratios in each partition.
The training examples were stratified and split evenly among
the three nodes, in order to have a fair comparison among the
various methods.

Table 1. The properties of the adopted datasets.
Dataset #Instances #Attributes #Classes

airlines 539383 8 2
covtypeNorm 581012 55 7
KDDCup99 4898431 42 23
poker-lsn 829201 11 10

Table 2. Strategy configuration.
Parameters (π) Agent distribution (δ)

Pruning = true contactPerson, node 1, 1
WindowInitPerc = 0.15 roundController, node 1, 1
StopTestSetPerc = 0.15 worker, node 1, 1
AccuracyThr = 0.004 worker, node 2, 1
MaxRounds = 10 worker, node 3, 1
µ = 0.15
∆ = 0.15
γ = 10

3.2. Case study 2: pixel-based segmentation
Computer Vision (CV) is a discipline which attempts to em-

ulate the perceptual interpretation of images developed by the
human eye and brain. CV implies the acquisition and analy-
sis of digital images represented as 2D arrays which contain
color-spatial features that create different complex patterns. In
order to create high level representations from those patterns,
machine learning techniques are used. One of the most im-
portant challenges in CV is the segmentation of images with
classification purposes. Although CV has multiple potential ap-
plications, the computationally demanding nature of the state-
of-the-art algorithms makes them difficult to apply and ask for
more efficient data analysis schemes.

A pixel-based segmentation problem consists on extracting
features from labeled pixels to create a training dataset, which
in turn is used to construct a model to predict the class of un-
seen pixels, and in this way achieve image segmentation (Wang
et al., 2012). As each training example is a pixel, the training set
becomes restrictively big and parallel methods are necessary.

This case study deals with sequences of colposcopic im-
ages presenting possible precancerous cervical lesions (Acosta-
Mesa et al., 2009). A colposcopy test consists in the visualiza-
tion of the cervix through a low power microscope called col-
poscope. During visualization time, a solution of acetic acid is
spread over the cervix surface in order to induce a coagulation
process on those cells that are in transformation process due to
the cancerous lesion. For the purpose of the case study reported
here, a sequence of images was taken during visualization time,
in order to capture the temporal color changes on the tissue.

150

7

The image sequences were extracted from 38 women pa-
tients, ages ranging from 22 to 35 years old. All of them gave
informed written consent.

time

Fig. 4. Example of a sequence of colposcopic images. Black dots represent
pixels labeled by a medical expert.

For each patient a range between 310 and 630 aligned images
were obtained. The difference on the number of images per pa-
tient is due to the fact that some patients where recorded for a
longer time than others. A medical expert labeled some of the
pixels from the images of each patient (Fig. 4 shows an exam-
ple). Taking into account that the images are aligned, a mask for
each patient can be drawn, marking six classes: normal tissue,
immature metaplasia, mature metaplasia, ectopy, low grade le-
sion, and high grade lesion. From these classes, only the last
two represent possible precancerous lesion. We are only con-
cerned in recognizing two classes: possible precancerous lesion
(+) and the opposite (−), but the six classes are considered in
order to exploit class decomposition to deal with class imbal-
ance (Stefanowski, 2013).

As shown in Table 3, observations are imbalanced, having
substantially more possible precancerous lesion observations
(+). Classes are balanced by varying the number of images
from the patients, depending on the number of observations of
the class. Less observed classes needed more images from a
patient with observations of that class. As the minimum num-
ber of images in the series is 310, this value is adopted as
the maximum number of images that could be considered for
a patient. The minimum number of observations of a class is
771, multiplying that value by 310 yields to 239010, which is
the maximum number of instances per class that can be ob-
tained in a balanced set. So the total number of instances is
239010 ∗ 6 = 1434060.

Table 3. The six classes of the case study 2 and the associated number of
patients and observations for each one.

Class #Patients #Observations
Normal tissue (−) 11 4294
Immature metaplasia (−) 7 771
Mature metaplasia (−) 5 1264
Ectopy (−) 2 802
Low grade lesion (+) 26 23897
High grade lesion (+) 3 2908

Observe that this process still results in an imbalance of nega-
tive and positive classes. The resulting imbalance is intended as
a mean to mitigate the problem of fewer patients presenting ob-

servations of the negative class, which affects the results when
using a leave-one-out evaluation per patient, as the evaluation
for patients with negative observations tend to draw a signif-
icant percentage of negative examples for testing, creating an
important imbalance on the training data, favoring the positive
class.

Using FIJI (Schindelin et al., 2012), 30 numeric attributes
were extracted from the pixels of interest, by applying the fol-
lowing texture filters: Variance, Mean, Minimum, Maximum,
and Median. Each filter used a maximum number of 16 neigh-
bors (maximum sigma parameter in FIJI).

Results are evaluated using the leave-one-out method, in or-
der to properly assess accuracy in this case. The test dataset in
each case is extracted from a single patient, which means that
38 iterations are performed. For each tested strategy, with the
exception of the Centralized one, the training data was stratified
and evenly split in the available nodes. Parallel Counter GPU
Extra configuration is shown in Table 2.

4. Results and discussion

Table 4 shows the results for the case study 1. A Wilcoxon
signed rank test with a significant evidence at α = 0.05 and
three possible outcomes (Won, Lost, Tie), is adopted to com-
pare the accuracy of the considered strategies. The accuracy
of Parallel Counter GPU Extra is comparable with that of the
other methods in all datasets, although being slightly lower for
the airlines and covtypeNorm datasets.

Observe that, while preserving accuracy, our strategy reduces
the number of examples used for training, up to a 95% (around
49% in the worst case). This results in an important improve-
ment in speed terms, when compared with our previous work,
Parallel Counter GPU. Such improvement is due exclusively
to the extra filtering proposed, independently of the GPU op-
timization shared by both strategies. When compared with the
rest of the strategies, our proposal is consistently faster than the
Weka Centralized approach and even faster than Bagging and
Random Forest in some cases. Centralizing VFDT, given its
incremental nature, is by far the fastest of the considered strate-
gies, but this is payed with a poor accuracy, even when all the
available examples are used to induce the model.

Bagging always maintains a similar accuracy as the Weka
Centralized approach, showing a consistent good time perfor-
mance, which results of working with one third of the data in
each distributed node. Bagging seems to overcome the possi-
ble bias imposed by data distribution, even if such bias is low
in this case, as the data was stratified for distribution. It would
be interesting to test this method with truly biased distributed
datasets.

The decay of accuracy and time performance shown by Ran-
dom Forest in some datasets, is likely due to the random se-
lection of attributes at each splitting point, i.e., the most infor-
mative attributes could not be selected, tending to create bigger
and less accurate trees. Also, being 48 the maximum number
of trees in the forest enabled in our setting, there was not im-
provement in accuracy neither. Furthermore, the resulting big-
ger trees tended to be slower to induce that those obtained by
Bagging.

151

8

Table 4. Results for the case study 1: known datasets. In Wilcoxon column the accuracy of each method is compared against Parallel Counter GPU Extra.

DS Strategy Accuracy %Instances Time (seconds) Wilcoxon test
airlines Parallel Counter GPU Extra 65.36 ± 0.25 51.21 ± 0.03 435.04 ± 106.28 –
airlines Weka Centralized 66.34 ± 0.11 100.00 ± 0.00 1164.66 ± 211.76 Won
airlines Parallel Counter GPU 66.26 ± 0.12 94.95 ± 0.01 1810.78 ± 446.47 Won
airlines Centralizing VFDT 65.24 ± 0.27 100.00 ± 0.00 4.67 ± 0.53 Tie
airlines Bagging 66.45 ± 0.13 100.00 ± 0.00 144.67 ± 4.47 Won
airlines Random Forest 66.76 ± 0.11 100.00 ± 0.00 123.82 ± 3.89 Won
covtypeNorm Parallel Counter GPU Extra 92.17 ± 0.52 43.28 ± 0.04 817.30 ± 253.27 –
covtypeNorm Weka Centralized 94.59 ± 0.04 100.00 ± 0.00 855.41 ± 97.88 Won
covtypeNorm Parallel Counter GPU 93.10 ± 0.34 48.44 ± 0.01 1089.03 ± 277.06 Won
covtypeNorm Centralizing VFDT 76.83 ± 0.35 100.00 ± 0.00 8.96 ± 0.56 Lost
covtypeNorm Bagging 94.99 ± 0.10 100.00 ± 0.00 149.35 ± 5.37 Won
covtypeNorm Random Forest 78.34 ± 0.39 100.00 ± 0.00 44.47 ± 4.38 Lost
KDDCup99 Parallel Counter GPU Extra 99.98 ± 0.01 4.29 ± 0.01 93.23 ± 6.671 –
KDDCup99 Weka Centralized 99.99 ± 0.01 100.00 ± 0.00 1688.91 ± 363.89 Tie
KDDCup99 Parallel Counter GPU 99.96 ± 0.01 9.28 ± 0.01 199.72 ± 45.62 Lost
KDDCup99 Centralizing VFDT 99.97 ± 0.01 100.00 ± 0.00 56.17 ± 1.307 Lost
KDDCup99 Bagging 99.99 ± 0.01 100.00 ± 0.00 371.51 ± 19.39 Tie
KDDCup99 Random Forest 99.97 ± 0.01 100.00 ± 0.00 132.43 ± 21.23 Lost
poker-lsn Parallel Counter GPU Extra 99.53 ± 0.59 8.80 ± 0.01 22.93 ± 3.51 –
poker-lsn Weka Centralized 99.78 ± 0.10 100.00 ± 0.00 174.26 ± 28.55 Tie
poker-lsn Parallel Counter GPU 98.67 ± 0.46 9.56 ± 0.01 24.90 ± 8.05 Lost
poker-lsn Centralizing VFDT 87.78 ± 1.92 100.00 ± 0.00 4.25 ± 0.47 Lost
poker-lsn Bagging 99.71 ± 0.10 100.00 ± 0.00 64.09 ± 5.49 Tie
poker-lsn Random Forest 96.73 ± 0.25 100.00 ± 0.00 236.34 ± 14.37 Lost

Due to space limitations, the detailed results about number
of leaves, tree size, and confusion matrix are omitted. The first
two of them are an indicator of the complexity of the induced
trees, but no significant differences were found, with the ex-
ception of Random Forest, as explained above; and VFDT that
always creates much smaller trees. No significant differences
were found for the confusion matrixes, neither. We expected
to improve accuracy for the minority classes in the KDDCup99
dataset, but a more refined sampling method, such as the one
described in (D’Addabbo and Maglietta, 2015), seems to be re-
quired.

Observe that the proposed Windowing based method could
be used in conjunction with assembly techniques, such as Bag-
ging and Random Forest, i.e., building forests of trees induced
using Parallel Counter GPU Extra, which is consistently faster
than the Weka Centralized approach traditionally adopted.

Table 5 shows the results for the case study 2. The origi-
nal case study results, reported in (Acosta-Mesa et al., 2009),
are also included in comparisons. That work uses a time se-
ries approach based on the intensity value of each labeled pixel
over time. Each training example represents a spatial positioned
signal, i.e., a spatio-temporal pattern, that it is smoothed us-
ing a polynomial model. A k-Nearest neighbor approach, with
k = 20 and Euclidean distance as similarity function, is used
for classification. The leave-one-out method is also adopted for
evaluation. On the contrary, Parallel Counter GPU is not in-
cluded, given that the new extra strategy already showed to be

consistently faster, while preserving accuracy. Even though, re-
sults for that strategy, using a different preprocessing setting,
are reported in (Limón et al., 2015).

As usual, sensibility (S en) is the rate of true positive obser-
vations (precancerous lesion) against the sum of true positive
plus false negatives, and the specificity (S pe) is the rate of true
negative (no precancerous lesion) observations against the sum
of true negative plus false positives.

When compared to the other considered strategies, Parallel
Counter GPU Extra obtains significantly the highest accuracy,
based on the Wilcoxon signed rank test computed as before.
This may be a consequence of a better integration of examples
from the negative classes, thus improving specificity. These
examples, although numerous, thanks to the class balance, do
not appear in patients as frequently as examples from the posi-
tive class, as shown in Table 3. This in turn affects the accuracy
evaluation in a leave-one-out setting, favoring the positive class,
but possibly the Windowing technique helped in this case. It
is also interesting to note how our method, while not directly
comparable, approaches the results from (Acosta-Mesa et al.,
2009), having the same accuracy, but differing on sensibility
and specificity, which it is expected since other preprocessing
and techniques were applied.

The wide standard deviation of the accuracy results is an indi-
cator of how different is the accuracy for each patient. For some
patients the accuracy is over 90% while for others is about 15%,
this happens because of the nature of the data, which it is a com-

152

9

Table 5. Results for case study 2 (n/a = not available). In Wilcoxon column each method is compared against Parallel Counter GPU Extra, a – means that
the comparison is not possible.

Strategy Accuracy %Instances Time (seconds) Wilcoxon test Sen Spe
Parallel Counter GPU Extra 67.61 ± 19.32 37.00 ± 3.52 3782.26 ± 1094.21 – 60.96 64.83
Weka Centralized 63.68 ± 18.44 100.00 ± 0.00 6436.64 ± 923.16 Lost 60.80 61.60
Centralizing VFDT 53.34 ± 20.58 100.00 ± 0.00 32.03 ± 2.61 Lost 53.10 58.51
Bagging 64.25 ± 21.78 100.00 ± 0.00 1138.83 ± 108.83 Lost 65.40 59.16
Random Forest 58.88 ± 23.71 100.00 ± 0.00 1817.10 ± 179.18 Lost 68.78 49.34
Original results (Acosta-Mesa et al., 2009) 67.00 ± n/a n/a n/a n/a – 71.00 59.00

mon place in medical applications. For some patients there are
few observations, and also some classes happen in few patients,
being a problem when adopting a leave-one-out approach for
testing.

Our method is considerably faster than the Centralized ap-
proach, while slower than Bagging and Random Forest, but
with significant better accuracy. Centralized VFDT stands out
as the faster strategy, but it also has the worst accuracy.

5. Conclusions and future work

Parallel Counter GPU Extra strategy showed to be well suited
to DDM scenarios, involving large amounts of data scattered
in different sites. The proposed enhancements overcome the
time performance issues associated to Windowing based strate-
gies, while achieving similar accuracy results to the centralized
approach. The strategy seems also very promissory for pixel-
based segmentation problems, when combined with a care-
ful image preprocessing. Distributing the data in such cases,
improves time performance and reduces memory loads, when
comparing to centralized approaches, keeping also a decent
overall performance when compared to meta-learning methods,
e.g., Bagging and Random Forest.

Our experimental settings produce stratified partitions of the
original datasets, distributed in the available JaCa-DDM nodes.
Testing the considered strategies when this is not the case would
be of interest to evaluate their performance when facing lo-
cal overrepresented classes. Parallel Counter GPU Extra is ex-
pected to degrade gracefully in such situations, but the exact im-
pact of such bias need to be established in future experiments.

Parallel Counter GPU Extra performs a centralized induction
exploiting a distributed search for training examples. While this
allows for a single model with a global scope of the data, it also
creates a potential bottleneck. An alternative approach would
be to distribute the inductive process as well. Indeed, this is
the way adopted by meta-learning methods (Chan and Stolfo,
1997), e.g., Bagging and Random Forest, combining the re-
sults of a number of separate learning processes in an intel-
ligent fashion. Voting, arbitrating, and combining techniques
can be used (Prodromidis et al., 2000) with this purpose. Nev-
ertheless, a major issue of meta-learning is obtaining models
that represent a good generalization of all the data, considering
that they have been build from incomplete local data (Secre-
tan, 2009). Adopting Windowing as a subsampling process in
meta-learning methods, or using it as a mean to boost time per-
formance on the induction of individual trees in a forest, are
very interesting lines of research.

JaCa-DDM was very useful for implementing and deploying
the strategies discussed in this paper. Upcoming improvements
to this system include usability issues as: adding more primitive
Weka/MOA based models to be used in user defined strategies;
providing a web based interface to easily configure and launch
experiments at distance; and a description language with an as-
sociated graphic tool for designing strategies.

Beyond the technical results, the discussed JaCa-DDM
strategies, and the tool itself, are intended to bolster the in-
terest on the alternative Agent Mining approach to DDM, sup-
ported by the current advances on Agent Oriented Software En-
gineering, e.g., Jason and CArtAgO Artifacts. We expect that
the promising results showed by Parallel Counter GPU Extra,
promote the use of JaCa-DDM to model and implement better
strategies, exploiting the social dimension of Multi-Agent Sys-
tems.

Acknowledgments

First author was funded by Conacyt scholarship 362384.
This work has been partly supported by the Spanish Ministry
of Science and Innovation project TIN2015-66972-C5-5-R.

References

Acosta-Mesa, H.G., Cruz-Ramı́rez, N., Hernández-Jiménez, R., 2009. Aceto-
white temporal pattern classification using k-nn to identify precancerous cer-
vical lesion in colposcopic images. Computers in biology and medicine 39,
778–784.

Albashiri, K.A., Coenen, F., 2009. Agent-enriched data mining using an ex-
tendable framework, in: Agents and Data Mining Interaction. Springer, pp.
53–68.

Bailey, S., Grossman, R., Sivakumar, H., Turinsky, A., 1999. Papyrus: a sys-
tem for data mining over local and wide area clusters and super-clusters, in:
Proceedings of the 1999 ACM/IEEE conference on Supercomputing, ACM.
p. 63.

Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B., 2010. Moa: Massive online
analysis. The Journal of Machine Learning Research 11, 1601–1604.

Bordini, R.H., Hübner, J.F., Wooldridge, M., 2007. Programming Multi-Agent
Systems in Agent-Speak using Jason. John Wiley & Sons Ltd.

Breiman, L., 1996. Bagging predictors. Machine learning 24, 123–140.
Breiman, L., 2001. Random forests. Machine learning 45, 5–32.
Cao, L., Weiss, G., Philip, S.Y., 2012. A brief introduction to agent mining.

Autonomous Agents and Multi-Agent Systems 25, 419–424.
Chan, P.K., Stolfo, S.J., 1997. On the accuracy of meta-learning for scalable

data mining. Journal of Intelligent Information Systems 8, 5–28.
Chawla, N.V., Moore, T.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.,

Springer, C., 2003. Distributed learning with bagging-like performance.
Pattern recognition letters 24, 455–471.

D’Addabbo, A., Maglietta, R., 2015. Parallel selective sampling method for
imbalanced and large data classification. Pattern Recognition Letters 62,
61–67.

153

10

Domingos, P., Hulten, G., 2000. Mining high-speed data streams, in: Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM. pp. 71–80.

Fürnkranz, J., 1998. Integrative windowing. Journal of Artificial Intelligence
Research 8, 129–164.

Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W.Y., 1999. Boat—optimistic
decision tree construction, in: ACM SIGMOD Record, ACM. pp. 169–180.

Genuer, R., Poggi, J.M., Tuleau-Malot, C., Villa-Vialaneix, N., 2015. Random
forests for big data. arXiv preprint arXiv:1511.08327 .

Kargupta, H., Byung-Hoon, D.H., Johnson, E., 1999. Collective data mining:
A new perspective toward distributed data analysis, in: Advances in Dis-
tributed and Parallel Knowledge Discovery, Citeseer.

Lichman, M., 2013. UCI machine learning repository. URL: http://

archive.ics.uci.edu/ml/.
Limón, X., Guerra-Hernández, A., Cruz-Ramırez, N., Acosta-Mesa, H.G.,

Grimaldo, F., 2015. A windowing based gpu optimized strategy for the
induction of decision trees in jaca-ddm, in: Artificial Intelligence Research
and Development: Proceedings of the 18th International Conference of the
Catalan Association for Artificial Intelligence, IOS Press. p. 100.

Limón, X., Guerra-Hernández, A., Cruz-Ramı́rez, N., Grimaldo, F., 2013. An
agents & artifacts approach to distributed data mining, in: Castro, F., Gel-
bukh, A., Mendoza, M.G. (Eds.), 11th MICAI, Springer Verlag, Berlin Hei-
delberg. pp. 338–349.

Lo, W.T., Chang, Y.S., Sheu, R.K., Chiu, C.C., Yuan, S.M., 2014. Cudt: a cuda
based decision tree algorithm. The Scientific World Journal 2014.

Ma, W., Agrawal, G., 2009. A translation system for enabling data mining
applications on gpus, in: Proceedings of the 23rd international conference
on Supercomputing, ACM. pp. 400–409.

Mehenni, T., Moussaoui, A., 2012. Data mining from multiple heterogeneous
relational databases using decision tree classification. Pattern Recognition
Letters 33, 1768–1775.

Melgoza-Gutiérrez, J., Guerra-Hernández, A., Cruz-Ramı́rez, N., 2014. Collab-
orative data mining on a BDI multi-agent system over vertically partitioned
data, in: Gelbukh, A., Castro-Espinoza, F., Galicia-Haro, S.N. (Eds.), 13th
Mexican International Conference on Artificial Intelligence: Special Ses-
sion, Revised Papers, IEEE Computer Society, Los Alamitos, CA, USA. pp.
215–220.

Moemeng, C., Gorodetsky, V., Zuo, Z., Yang, Y., Zhang, C., 2009. Agent-
based distributed data mining: A survey, in: Data mining and multi-agent
integration. Springer, pp. 47–58.

Moemeng, C., Zhu, X., Cao, L., Jiahang, C., 2010. i-analyst: An agent-based
distributed data mining platform, in: Data Mining Workshops (ICDMW),
2010 IEEE International Conference on, IEEE. pp. 1404–1406.

Nguyen, H.L., Woon, Y.K., Ng, W.K., 2014. A survey on data stream clustering
and classification. Knowledge and Information Systems , 1–35.

Nickolls, J., Buck, I., Garland, M., Skadron, K., 2008. Scalable parallel pro-
gramming with cuda. Queue 6, 40–53.

Omicini, A., Ricci, A., Viroli, M., 2008. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems 17,
432–456.

Prodromidis, A., Chan, P., Stolfo, S., 2000. Meta-learning in distributed data
mining systems: Issues and approaches. Advances in distributed and parallel
knowledge discovery 3.

Quinlan, J.R., 1993. C4. 5: programs for machine learning. Morgan kaufmann.
Ricci, A., Piunti, M., Viroli, M., 2011. Environment programming in multi-

agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems 23, 158–192. doi:10.1007/s10458-010-9140-7.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Piet-
zsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al., 2012.
Fiji: an open-source platform for biological-image analysis. Nature meth-
ods 9, 676–682.

Secretan, J., 2009. An Architecture for High-Performance Privacy-Preserving
and Distributed Data Mining. Ph.D. thesis. University of Central Florida
Orlando, Florida. Orlando, FL., USA.

Sharp, T., 2008. Implementing decision trees and forests on a gpu, in: Com-
puter Vision–ECCV 2008. Springer, pp. 595–608.

Stefanowski, J., 2013. Overlapping, rare examples and class decomposition in
learning classifiers from imbalanced data, in: Emerging paradigms in ma-
chine learning. Springer, pp. 277–306.

Stolfo, S.J., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W., Chan, P.K.,
1997. Jam: Java agents for meta-learning over distributed databases., in:
KDD, pp. 74–81.

Tran, N.L., Dugauthier, Q., Skhiri, S., 2013. A distributed data mining frame-
work accelerated with graphics processing units, in: Cloud Computing and
Big Data (CloudCom-Asia), 2013 International Conference on, IEEE. pp.
366–372.

Tsoumakas, G., Vlahavas, I., 2009. Encyclopedia of Data Warehousing and
Mining. second ed.. Information Science Reference, Hershey, PA., USA.
chapter Distributed Data Mining. pp. 709–715.

Wang, X.Y., Zhang, X.J., Yang, H.Y., Bu, J., 2012. A pixel-based color im-
age segmentation using support vector machine and fuzzy c-means. Neural
Networks 33, 148–159.

Witten, I.H., Frank, E., 2005. Data mining: Practical machine learning tools
and techniques. Second ed., Morgan Kaufmann, San Francisco, CA., USA.

Wojnarski, M., Stawicki, S., Wojnarowski, P., 2010. TunedIT.org: System for
automated evaluation of algorithms in repeatable experiments, in: Rough
Sets and Current Trends in Computing (RSCTC), Springer. pp. 20–29.

Xu, J., Yao, L., Li, L., Chen, Y., 2014. Sampling based multi-agent joint learn-
ing for association rule mining, in: Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems, International
Foundation for Autonomous Agents and Multiagent Systems. pp. 1469–
1470.

Yoon, H., Alsabti, K., Ranka, S., 1999. Tree-based incremental classifica-
tion for large datasets. Technical Report. CISE Department, University of
Florida.

Zhong, N., Matsui, Y., Okuno, T., Liu, C., 2002. Framework of a multi-agent
kdd system, in: Intelligent Data Engineering and Automated Learning—
IDEAL 2002. Springer, pp. 337–346.

154

Distributed Transparency in Endogenous
Environments: the JaCaMo Case

Xavier Limón1, Alejandro Guerra-Hernández1, Alessandro Ricci2

1 Universidad Veracruzana, Departamento de Inteligencia Artificial, Sebastián
Camacho No 5, Xalapa, Ver., México 91000
xavier120@hotmail.com, aguerra@uv.mx

2 DISI, Università di Bologna, Via Sacchi, 3, Cesena, Italia 46100
a.ricci@unibo.it

Abstract. This paper deals with distribution aspects of endogenous en-
vironments, in this case, distribution refers to the deployment in several
machines across a network. A recognized challenge is the achievement of
distributed transparency, a mechanism that allows the agent working in
a distributed environment to maintain the same level of abstraction as in
local contexts. In this way, agents do not have to deal with details about
network connections, which hinders their abstraction level, and the way
they work in comparison with locally focused environments, reducing
flexibility. This work proposes a model that creates a distinctive layer
for environment distribution, which the agents do not manage directly
but can exploit as part of infrastructure services. The proposal is in the
context of JaCaMo, the Multi-Agent Programming framework that com-
bines the Jason, CArtAgO, and MOISE technologies, specially focusing
on CArtAgO, which provides the means to program the environment.
The proposal makes an extensive use of the concept of workspace to or-
ganize the environment and transparently manage different distributed
sites.

Keywords: Distributed environments, Endogenous environments, En-
vironment Programming, JaCaMo framework.

1 Introduction

Traditionally, agents are conceived as entities situated in an environment, which
they can perceive and modify through actions, also reacting to changes in it
accordingly [16]. Not only that, but the agents’ goal is to achieve an environment
desired state. This conception of environment, as the locus of agent perception,
action, reaction, interaction, and goals, stays true in current MAS development.

Two general perspectives are adopted when defined the concept of envi-
ronment in MAS: exogenous, and endogenous [14]. The exogenous perspective
is rooted in Artificial Intelligence, conceiving the environment as the external
world, separated to the actual MAS, which can be only perceived and acted upon
by agents. An example of this conception can be found in EIS [1]. In contrast,

155

the endogenous perspective, grown in the context of Agent-Oriented Software
Engineering (AOSE) [10], conceives the environment as a first class abstraction
for MAS engineering [17], that not only can be perceived and acted upon, but
it can also provide services and tools for the agents to aid them in their tasks,
and as such, it is designed and implemented as part of the whole system. An
example of this conception is found in CArtAgO [13].

From a Software Engineering point of view, environments can also be of two
types: local, and distributed. In the local case, the entirety of the environment
is centralized in a single process, being the easiest case for implementation.
Distributed environments, on the other hand, entail multiple processes, possibly
across a network, to contain the environment, and presents various challenges
in the implementation and conceptualization side. In this work, we expose the
idea that, from the agents point of view, there should not be any difference
between local and distributed environments, the right level of abstraction should
be encouraged instead, recognizing this by the term Distributed Transparency.

Distribution is not a new topic in MAS, multiple MAS technologies such as
JADE [2], have a mature support for it, but it is mostly centered in agent com-
munication and interaction, not on the endogenous conception of environment
which this works entails. In this regard, JaCaMo [4] is a better example, as it
supports endogenous distributed environments. This support is practical, but it
lacks distributed transparency as there is a clear conceptual distinction between
local and distributed environments, so agents, and agent plan programmers, need
to handle the difference, reducing in this way the flexibility of the system, and
forcing the programmer to change the level of abstraction in each case.

Scalability and fault tolerance are also issues when dealing with distribution,
a flexible configuration is required in order to deploy the system in different
settings, allowing it to grow or change as network problems arise. A good example
of a distributed deployment system for JADE is [6]. Returning to the case of
JaCaMo, there is no support for fault tolerance, and it lacks proper configuration
facilities for distributed deployment.

This work proposes an extension to the Agents & Artifacts model of JaCaMo
for modeling distributed transparent environments, while giving insights of how
to address distributed deployment and fault tolerance. The outcome is an im-
plemented JaCaMo-oriented infrastructure and Agent API that gives support to
the mentioned requirements, while extending the dynamics and possibilities of
MAS programming in general.

The paper is organized as follows. Section 2 briefly introduces the JaCaMo
framework, addressing its distributed model. Section 3 introduces the problems
present in the JaCaMo distributed model, presenting a proposal to solve them,
first in an intuitive and informal manner, and then formally. Section 4 features
different aspects of the implementation, such as the general architecture, and
configuration and deployment. Section 5 discusses a case study that shows how
the new JaCaMo-oriented implementation approach compares to current Ja-
CaMo, giving code examples. Being a work in progress, section 6 discusses vari-

156

ous topics regarding future work, including proper evaluation and fault tolerance
implementation. Finally, section 7 closes this paper with a conclusion.

2 Background

Although the discussion here is about endogenous environments in general, we
adopt the JaCaMo [4] framework to implement our proposed model and guide
our discussion, this is due the fact that, to the best of our knowledge, it has the
most mature implementation of endogenous environments for MAS. As such, a
brief introduction of JaCaMo is presented in this section. JaCaMo is the result
of the orthogonal composition of three technologies for MAS: Jason [5] (taken
as a proper name inspired by Greek mythology), CArtAgO [13] (Common AR-
Tifact infrastructure for AGents Open environments), and MOISE [9] (Model of
Organisation for multI-agent SystEms).

Jason provides the means for programming autonomous agents. It is an agent
oriented programming language that entails the Belief-Desire-Intention (BDI)
approach, it is based on the abstract language AgentSpeak(L) [12]. Apart from
its solid BDI theoretical foundations, the language offers several facilities for
programming Java powered, communicative MAS. Communication in Jason is
based on Speech Acts, as defined in KQML [7].

CArtAgO provides the means to program the environment, following an en-
dogenous approach where the environment is part of the programmable system.
In CArtAgO terms, the aspects that characterize a model for environment pro-
gramming are the following [14]: 1) Action model: how to perform actions in
the environment. 2) Perception model: how to retrieve information from the
environment. 3) Environment computational model: how to represent the envi-
ronment in computational terms. 4) Environment data model: how to share data
between the agent and environment level to allow interoperability. 5) Environ-
ment distributed model: how to allow computational distributed environments.
Aspects 1-3 are directly supported by artifacts [11], which are dynamical sets of
computational entities that compose the environment and encapsulate services
and tools for the agents. Artifacts are organized and situated in workspaces,
which essentially are logical places (local or remote) where agents center their
attention and work. Aspect 5 is supported by workspaces, but also partially by
artifacts, as artifact actions can be executed remotely. Aspect 4, on the other
hand, depends on the underlying agent programming language used and is not
directly related to artifacts or workspaces.

MOISE provides the means to create agent organizations, which have the
aim to control and direct agent autonomy in a general purpose system. To this
end, it is possible to specify tree aspects: i) Structural, consisting on the different
agent groups and roles that take part in the organization; ii) Functional, defined
by social schemes, missions, and goals which direct the agent behaviour toward
organization ends; and finally iii) Normative, defined though norms that bind
roles to missions, constraining agent’s behaviour when entering a group and
playing a certain role.

157

2.1 JaCaMo and CArtAgO Distribution Model

As mentioned earlier, environment programming in JaCaMo is provided by
means of CArtAgO, considering distribution in its model. At the higher level,
distribution is achieved through workspaces, which serve as logical places where
agents may center their attention, and where artifacts are situated. Agents can
create, join, and quit workspaces. If an agent is in a workspace, it can use the
artifacts situated there.

At the low level, nodes enable distribution. A node is a CArtAgO process
that can be remote, where workspaces can be spawned. When a JaCaMo MAS
is deployed, it is contained in a default node, that node is also the default for
agents, which consider it as it’s local context, so workspaces created in that node
are also local workspaces, but workspaces created in different nodes are consid-
ered remote workspaces. The distinction between remote and local workspace is
not only conceptual, but also syntactical, requiring IP and port information at
the agent level to manipulate remote workspaces. Figure 1 depicts the current
CArtAgO environment model from the workspaces and nodes perspective. From
the figure, it is apparent the fact that there is no connection between nodes,
and in consequence between workspaces in different nodes, needing to explicitly
know the IP address and port of each node.

Fig. 1. Current CArtAgO environment model depicting multiple nodes and workspaces
deployed.

More concretely, the following code snippet shows the difference in the Ja-
CaMo API for the local and remote versions of join workspace, taking as a basis
figure 1 where default node represents the local node, and node2 a remote one:

1 joinWorkspace("main", WspId1);
2 joinRemoteWorkspace("workspace2", "192.168.0.2:8091", WspId2);

158

3 Proposal

Environment programming in JaCaMo comes with various shortcomings regard-
ing distributed settings, being the most important the fact that local and remote
workspaces are defined and treated differently, which derives in the following
problems: i) There is not distributed transparency for agents, being forced to
directly manipulate network information, making network distinctions between
workspaces. ii) The underlying environment topology is difficult to represent and
exploit by the agents as it does not follow any structure or workspace relations
beyond the sharing of the same node. All of these problems have the consequence
of reducing the abstraction level in which agents work, impacting flexibility and
environment exploitation as well.

Another problem is the lack of proper configuration facilities to allow the in-
clusion of remote workspaces information at deployment time, meaning that host
information for remote workspace spawning need to be hard-coded on the agent
programs or externally supported. To spawn a remote workspace, a CArtAgO
node needs to be running on the destination host, and there is not any integrated
facility to manage them automatically when needed. Furthermore, the current
distributed implementation does not exhibit any degree of fault tolerance, this
is specially important for possible network connection problems that may arise
in a distributed system.

In this section, a proposal to solve the identified problems is presented. A sep-
aration between environment and infrastructure is suggested. The environment
is represented as a hierarchical tree structure, which represents the topology.
In this tree, each node is a workspace which actual physical placement on the
distributed system is irrelevant. Workspaces may be deployed in different places,
but for the agents point of view, it only matters their placement in the topology.
A workspace may be the logical parent of another one, multiple workspaces can
be in the same physical place, and there is no restriction about how the topol-
ogy may be organized, e.g.; workspaces on the same physical place may be on
different branches. This allows to organize environments as it is usually done
in CArtAgO, but in a more structured way, also supporting remote workspaces
transparently.

In a practical sense, each workspace in the tree is represented by a path
starting at the root workspace, these paths brings the notion of logical place-
ment that agents require to organize and exploit their environment. We adopt
a Unix-like path format to represent this placement, but using a ”.” instead of
a ”/”, following Jason syntax. These paths are used by the agents to execute
environment related actions, such as creating new workspaces or joining one.
From the proposed JaCaMo API, there is no difference between local and re-
mote actions related to workspaces. For example, returning to the code snipped
presented in section 2.1 for joining local and remote workspaces, which it is re-
lated to figure 1; with the proposal, a workspace topology would be created, a
possibility is to have workspace2 and workspace3 as direct descendants of the
root workspace main, with this setting the associated code snipped is as follows:

159

1 joinWorkspace("main", WspId1);
2 joinWorkspace("main.workspace2", WspId2);

As in current CArtAgO, agents may work in multiple workspaces at the same
time, but the concept of current workspace is dropped since in actuality all the
joined workspaces should be considered the current context of working. Never-
theless, agent may specify the target workspace for an action. A new introduced
concept is the home workspace of an agent, which it is the workspace where the
agent is initially deployed, serving as a relative reference to other places in the
topology, providing a default place for the agent, and also serving as the default
workspace to execute actions when a target workspace is not specified.

On regard of the infrastructure, a layer is added to manage distribution, this
layer provides the required services for the agents to exploit their distributed
environment. These services include: i) Workspace management, so agents can
create, join, and quit workspaces no matter their physical placement; ii) Topology
inspection, so agents can reason about the current topology organization and do
searches concerning workspaces; iii) Workspace dynamics observation, so agents
can know when other agents manage workspaces, or when workspaces disconnect
and reconnect after a network problem; iv) Disconnection and fault tolerance to
manage and recuperate from network problems, which it is currently left as
future work, but initially designed as presented in section 6.2 . We believe that
the set of mentioned services do not only bring distributed support, but also
enhance the dynamics of MAS in general, extending its possibilities.

3.1 Formal description

JaCaMo assumes an endogeneous approach to MAS, i.e., the environment is an
explicit part of the system:

Definition 1. A MAS is composed by a set of agents (Ags), their environment
(Env), and an infrastructure (Infr) running both of them:

MAS = {Ags, Infr,Env}

The set of agents is composed by n ≥ 1 agents:

Ags = {a1, . . . , an}
Each agent, as usual, is composed by beliefs, actions, and other elements

equal to:

ai = {bels, acts, . . . }
By default, when created, an agent includes minimally:

ai = {joined(home)}, {join, quit, create}, . . . }

160

node 1

home 1 home 2

main

living 1 living 2kitchen 1 kitchen 2

node 2 node 3

Fig. 2. The intented view of an endogeneous environment.

which means that every agent believes he has joined a home workspace, and
has actions to join, quit, and create workspaces; and update the information
about the environment.

Figure 2 illustrates the intended view of the environnment in this proposal.
First, the environment, properly speaking, is a tree of workspaces, expressing
a kind of spatial relation among workspaces, e.g., the kitchen 1 is at the home
1. Second, nodes and hosts are not part of the environment, but are defined as
part of the infrastructure of the MAS, nevertheless, workspaces keep information
about its corresponding physical node.

The infrastructure is a layer hidden to the agents, that gives the low level
support to distribution, formally defined as:

Infr = {Nodes,Hosts}

where:

– Nodes = {node1, . . . , nodek} is a set of CArtAgO nodes, i.e.; processes,
possibly remote, where workspaces can be created. Each nodei is a tuple
〈ni, SWsps, hi, port〉, where ni is an unique identifier for the node; SWsps ⊆
W is the set of spawned workspaces in the node, containing at least a default
workspace for the node; hi is an identifier of the host computer where the
node exists; and port is the host port used by the node process.

– Hosts = {host1, . . . , hostp} is the set of available computer devices on the
distributed system. Each hosti is a tuple 〈hi,HNodes, ip〉, where hi is a host
unique identifier, HNodes ⊆ Nodes is a set of hosted nodes, and ip is the
IP address of the computer.

Formally, the environment Env is defined as a graph:

Env = {W,E}

where:

161

– W = {w1, . . . , wi} is a finite, non-empty set of i ≥ 1 workspaces that contain
artifacts. Each wi = 〈idW, name, ni〉, where idW is an unique identifier for
the workspace, name is a logical name, and ni is a reference to the CArtAgO
node in Infr that contains wi. The node element establishes a connection
between the environment and the infrastructure, in order to forward agent
actions to the destined physical place.

– E ⊂ W 2 is a set of edges over the workspaces, such that Env is minimally
connected, i.e., it is a rooted tree that represents the environment topology.

For instance, following Figure 2, Env = {W,E}, and considering for simplic-
ity only the name of each wi, such that:

– W = {main, home1, home2, living1, kitchen1, living2, kitchen2}
– E = {{main, home1}, {main, home2}, {home1, living1}, . . . }

The expression w1.w2wn denotes a path on Env, if:

– wi ∈W for i = 1, . . . , n;
– {wi−1, wi} ∈ E for i = 2, . . . , n.

Abusing a little bit of the notation, we can write w1.wn ∈ Env. For in-
stance, main.home1.living1 ∈ Env. Some useful operations over paths, include:

– last(w1.w2.wn) = wn

– butlast(w1.w2.wn−1.wn) = w1.w2.wn−1
– add(w,w1.w2.wn, Env) = w1.w2.wn.w. This involves adding w to

W , and {wn, w} to E in Env.
– del(w,w1.w2.wn.w,Env) = w1.w1.wn. This involves deleting w from

W , and {wn, w} from E in Env.

In what follows, the transition rules related to environment agent actions are
described, workspaces denote paths in the environment.

Joining a workspace An agent can ask himself about the workspaces he has
currently joined: agbels |= joined(w), if and only if, w is a workspace currently
joined by the agent. Recall that by default agbels |= joined(home). An agent can
join different worspaces concurrently, so that agbels |= joined(Ws) unifies Ws
with a list of the workspaces joined by the agent. Two transtion rules define the
behavior of the action join. First, an agent can join a worspace w, if and only if
w is a path in the environment Env and it is not believed to be already joined:

(join1)
join(w) | w ∈ Env ∧ agbels 6|= joined(w)

〈ag,Env〉 → 〈ag′, Env〉
s.t. ag′bels = agbels ∪ {joined(w)}

Second, nothing happens if an agent tries to join a previously joined worspace:

(join2)
join(w) | agbels |= joined(w)

〈ag,Env〉 → 〈ag,Env〉
Any other use of join fails.

162

Quiting workspaces An agent can quit the workspace w if he believes he had
joined w. The agent forgets such belief.

(quit1)
quit(w) | agbels |= joined(w)

〈ag,Env〉 → 〈ag′, Env〉
s.t. ag′bels = agbels \ {joined(w)}

If the agent tries to quit a workspace he has not joined yet, nothing happens:

(quit2)
quit(w) | agbels 6|= joined(w)

〈ag,Env〉 → 〈ag,Env〉

Creating workspaces An agent can create a workspace w, if it is not a path
in the environment, but butlast(w) is one:

(create1)
create(w) | w 6∈ Env ∧ butlast(w) ∈ Env

〈ag,Env〉 → 〈ag,Env′〉
s.t. Env′ = add(last(w), butlast(w), Env)

Observe that the result of creating a workspace must be propagated to the
rest of the agents in the MAS. This could be done by the infrastructure, or
broadcasting the add operation. The actual node where the workspace is going
to be created is decided by the infrastructure following a policy, by default
the infrastructure spawns the workspace on the same node where its parent
workspace is running.

Trying to create an existing workspace does nothing:

(create2)
create(w) | w ∈ Env

〈ag,Env〉 → 〈ag,Env〉

4 Implementation

The model introduced on section 3 is open enough to allow different implemen-
tations. This section presents a practical possibility, intended to be integrated
with JaCaMo. The core implementation and main design choices are related to
the general architecture, and configuration and deployment.

4.1 General architecture

The architecture to support agent services is based on the concept of Node, which
refers to the Nodes element in Infr. Nodes represent independent CArtAgO
processes, possibly remote, running on a given host (Hosts element in Infr),

163

and associated to a port. Nodes are the main abstraction to manage workspaces
(W element in Env), and as such, they provide all the necessary tools to create,
join, and quit workspaces, as well as the means to communicate with other nodes
in order to maintain a consistent workspace topology, and properly dispatch
topology related events. The workspace topology corresponds to the E element
in Env. A NodeArtifact is the gateway used by an agent to interact with the node
services and to observe the distributed environment. There is a NodeArtifact in
each workspace, and every agent has access to one of them, which one depends
on its home workspace, which in turn it is intended to be on the same node as
the agent process.

Nodes communicate between each other following a centralized approach:
one node is designated as the central node, this is usually the node deployed by
default by JaCaMo, so every change on the topology is inspected and approved by
a single node, and the associated actions and events are dispatched from there.
This centralized approach makes possible to maintain a consistent topology,
avoiding run conditions. To exemplify node communication, the workflow for
creating a new workspace is the following:

– An agent that wants to create a workspace issues the action to its corre-
sponding NodeArtifact, passing a tree path.

– The artifact checks if the tree path is consistent with the topology tree, if it
is, it sends a request to the central node.

– The central node issues a request to the end node where the workspace is
actually going to exist. By default, it chooses as end node the same as the
parent workspace from the path given.

– The end node creates the workspace and returns control to the central node.
– The central node makes the corresponding changes to the workspace topol-

ogy and communicates the success to the original requesting node. It also
dispatches a create and tree change event to the other nodes.

As the node model is centralized, there exists the concern of a single point of
failure, that is why all nodes maintain redundant information about the topology,
so it is possible to recuperate from a central node dropping, as any node can take
the role of central node. The topology structure is also lightweight, which speeds
up the tree synchronization among nodes, this synchronization is only required
when there is a change in the topology. This redundancy also allows to boost
the efficiency of operations such as joining and quitting workspaces, since those
operations only need to read from the topology, so the local copy is used in those
cases. Communication with the central node is only required in cases where a
change in the topology is required. We believe that in traditional environment
management, it is more common for the agents to join and quit workspaces than
to create new ones.

4.2 MAS configuration and deployment

To ease the deployment of the distributed infrastructure is a goal of our overall
proposal, this means to be able to configure and launch the desired hosts, nodes,

164

and workspaces that will take part in the MAS from the start. It is also possible to
manually add new nodes after deployment. The idea is to extend the deployment
of JaCaMo, where only workspaces are considered. JaCaMo uses a text file known
as the JCM file to configure the deployment of the MAS. The intention is to
further include fields in this file to also configure host, and nodes for distributed
systems; and add the facilities to automatically launch CArtAgO nodes in remote
machines through a daemon service.

The changes to the JCM file include:

– Host configuration: assign a logical name and IP address to each host.
– Node configuration: assign a logical name for the node, i.e.; the name of the

default workspace; the related host name; and optionally a port number.
– Workspaces configuration: relate each workspace to a specific node.
– Lib file: the path to a jar file containing all the necessary files to launch

CArtAgO nodes. This includes custom artifacts binaries, third party li-
braries, custom classes binaries, and any configuration file. This file is in-
tended to be shared among all nodes.

5 Case study

In order to show how to exploit the proposed distributed model and implemen-
tation, and how it compares to the current version of JaCaMo, a small case
study is presented in this section. This case study pretends to show the new
proposed agent API, and the flexibility of the proposed model, focusing mainly
on workload distribution, which is one of the aspects that can be enhanced, but
other aspects such as fault tolerance, reactiveness on environment changes, and
more complex agent organizations and dynamics are also possible.

The case study consists on constantly fetching current weather information
for every city in a country, and with that information, construct weather predic-
tion models for each city, so the models could be consulted by end users through
a user interface. The construction of each model is an online learning [3] task
that can be heavy on the computational side, so work distribution is desirable.
To simplify the distributed setting, assume that the cities of the country are
divided in west-cities and east-cities, one computer is in charge of the models
from the west-cities, and another one from the models of the east-cities; fur-
thermore, information fetching need to be quick and constant, and also the end
user searching service, so one computer takes care of both. The described setting
yields a total of three different computers in the distributed system.

Workflow is modeled through 3 agent programs: fetcher, which fetches weather
information and forwards it to a destination depending the type of city; learner,
which task consist on creating online weather prediction models for each city
with the data provided by the fetcher agent; and finally, a searcher agent, which
attends end user requests to retrieve information from the learned models.

When implementing this case study in current JaCaMo some problems will
arise: the IP addresses of the different computers should be hard-coded in the
agent programs; every CArtAgO node representing a remote workspace should

165

be manually started in every computer on the distributed setting; startup plans
should be implemented in order to focus the attention of each agent in its des-
ignated place; when the searcher agent has to collect information about learned
models to attend a petition, it necessarily has to ask learner agents about its
location, not only considering the workspace but also the ip address where the
workspace is, making also necessary to distinguish between local and remote
workspaces when the agent intend to return the result to the end user. A better
solution using our new approach that solves all the mentioned problems, and
better exploits the environment is presented next.

– A possible JACAMO configuration file for this example, following the idea
from section 4.2, is the following. For the sake of clarity, artifact related
configuration, and MOISE related organization is not shown.

1 mas weather {
2 host c1 {
3 ip: 192.168.0.2
4 }
5 host c2 {
6 ip: 192.168.0.3
7 }
8 node west {
9 host: c1

10 port: 8080
11 }
12 node east {
13 host: c2
14 port: 8080
15 }
16 agent fetcher : fetcher.asl {
17 home: main
18 }
19 agent west_learner : learner.asl {
20 home: main.west
21 }
22 agent east_learner : learner.asl {
23 home: main.east
24 }
25 agent searcher : searcher.asl {
26 join: main.central
27 }
28 lib_file : /home/system/wheather.jar
29 }

Note that workspaces main, main.west, and main.east are implicitly cre-
ated as they are the default workspaces for the nodes, e.g.; main is the node
deployed by default by JaCaMo.

In our proposed model, agents refer to workspaces only through their path
in the topology, giving in this way a more structured sense of placement. As
in UNIX file system paths, tree paths can be considered absolute or relative. A
path is relative from the home workspace of the agent, and should start with
a single dot, any other path is considered absolute and must begin at the root
workspace (by default main).

A simplified version of the agent programs is presented next.

166

– fetcher:

1 // creations and initializations omitted
2 +!fetch : true <-
3 getData(Data);
4 category(Data , Cat);
5 if(Cat == "west") {
6 .send(west_learner , tell , add(Data));
7 }
8 else {
9 .send(east_learner , tell , add(Data));

10 };
11 !fetch.

– learner:

1 // initialization of agent omitted
2 +add(Data): true <-
3 getCity(Data , City);
4 .concat(".", City , Path); //from home
5 createWorkspace(Path); //does nothing if already present
6 joinWorkspace(Path);// does nothing if already joined
7 // creations and initializations omitted
8 addData(Data)[wsp(Path)]; //route action to wsp
9 induceModel[wsp(Path)].

– searcher:

1 +search(Query) : true <-
2 //Query is just the name of the city
3 .concat(".*", Query , RegExp);
4 searchPaths("main", RegExp , [H | T]);
5 .length(List , Len);
6 if(Len > 0) {
7 joinWorkspace(H);
8 getForecast(Forecast)[wsp(H)];
9 quitWorkspace(H);

10 sendReply(Forecast);
11 }.

Some of the actions from the agent programs correspond to the API of the
proposed model, such actions are described as follows.

– joinWorkspace(+WspPath,−WspId): the agent adds a specified workspace
to its joined workspaces list, obtaining a workspace ID.

– quitWorkspace(+WspPath): removes a specified workspace from its joined
workspaces.

– createWorkspace(+WspPath): creates a new workspace on the specified
path. By default, the workspace will actually be spawned on the same
CArtAgO node as the parent workspace derived from WspPath, this allows
workload management for workspaces.

– searchPaths(+PointPath,+RegExp,−WspsPathList): returns a list with
the workspaces that follow a certain regular expression, the search is re-
stricted to the subtree given by PointPath. This action exemplifies how the
topology organization may be exploited.

167

It is worth mentioning that the actual API is more extensive, including per-
ception, events, and more actions related to the environment. For example, it
is possible for the agents to react to the creation of a new workspace through
the event created(WspPath), or analyze and exploit the current topology orga-
nization through the perception topology tree(List) where List is of the form:
[main, [subNode1, [subsubNode1, [...], subsubNodem]], ..., [subNoden]] .

As the example shows, agents do not concern about computer distribu-
tion, they simply work with workspaces: learner agents organize their work in
workspaces that can be on different computers; and the searcher agent can reach
any workspace directly, not relying on agent communication, but directly acting
though the knowledge of the topology. Deployment is also greatly enhanced since
the distributed setting is properly configured beforehand, and the launching of
nodes is automatic.

6 Discussion and future work

As a work in progress, our proposal still lacks a proper treatment of different
aspects such as evaluation, and fault tolerance. This sections briefly discusses
and outlines these topics, which are considered as immediate future work.

6.1 Evaluation

Our proposed model, while introduced in some formal way, still needs a proper
formal evaluation, for this end, the adoption of a more formal representation
such as the ones proposed in [8], and [15] seem to be required.

Concerning performance evaluation, with the adopted centralized model, it
is required to asses scalability issues that may arise as nodes are added to the
MAS. In case of finding such problems, we can still improve some of the required
subprocess, as the synchronization of the topology among all nodes, and event
propagation, which could be distributed.

6.2 Fault tolerance

Given the proposed architecture, connection loss is the same as node dropping,
and as such it directly impacts the topology tree structure used by agents as
all the corresponding workspaces are also lost. An intuitive idea of how fault
tolerance could be implemented following our design choices is described next.

Following the overall node organization introduced in section 4.1, all nodes
maintain a keepalive connection with the central node, and a ordered list of
connected nodes. If a node losses connection, then the central node issues the
corresponding dropping event to the rest of the nodes, and modifies the topology
tree structure accordingly. The disconnected node tries to establish a connection
with the rest of the nodes, following the order of the connected nodes list, this
being useful on the case that several nodes lost connection or the central node
dropped. With the available nodes (it may be only one), the node in the upper

168

position on the connected nodes list is designated as the new central node, issuing
the corresponding disconnection events and creating a new tree node structure
where every default workspace from the nodes is on the same level. The new
central node keeps trying to reconnect to the original central node for a period
of time.

When successfully reconnecting, the original central node will try to return
the topology to the way it was before the problem, but sometimes that would not
be possible, e.g.; when one of the nodes keep missed. It is strongly recommended
that every default workspace corresponding to a node is mounted on the same
upper tree level of the tree, that way when reconnecting, the tree structure
will keep consistent with the way it was before, otherwise the tree topology may
vary in an unexpected manner, which can be problematic on certain applications.
After the node tree structure is recreated, the reconnecting nodes return to work
with the original central node, and the central node triggers the corresponding
reconnection events.

7 Conclusion

The introduced model is a step forward to improve environment programming
for MAS, it addresses issues related to distribution, which are important for
a wide variety of applications. We see distributed transparency as the most
important contribution of this work, as Multi-Agent Systems are intended to
raise the level of abstraction in software development, as compared with other
industry established programming paradigms such as POO. Proper abstraction
levels for aspects such as concurrency management are already accomplished,
but distributed computing is still an important topic to improve.

With a solid foundation for distributed environment programming, it is pos-
sible to address new challenges like MAS interoperability, which refers to the
integration and collaboration of independent Multi-Agent Systems. An exten-
sion to the proposed model and implementation is envisaged to support MAS
interoperability features, such as MAS composition where two different MAS
can fuse together to extend the scope of their work; and also MAS attachment,
where a mobile MAS can temporally join a MAS in order to exploit services.
These features bring new possibilities to the dynamics of MAS in general, and
are also interesting from the software engineering point of view as they allows
an upper level of flexibility and scalability.

References

1. Tristan M Behrens, Koen V Hindriks, and Jürgen Dix. Towards an environment
interface standard for agent platforms. Annals of Mathematics and Artificial In-
telligence, 61(4):261–295, 2011.

2. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade–a fipa-compliant
agent framework. In Proceedings of PAAM, volume 99, page 33. London, 1999.

169

3. Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Mas-
sive online analysis. Journal of Machine Learning Research, 11(May):1601–1604,
2010.

4. Olivier Boissier, Rafael H Bordini, Jomi F Hübner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with jacamo. Science of Computer Pro-
gramming, 78(6):747–761, 2013.

5. Rafael H. Bordini, Jomi F. Hübner, and Mike Wooldridge. Programming Multi-
Agent Systems in Agent-Speak using Jason. John Wiley & Sons Ltd, 2007.

6. Lars Braubach, Alexander Pokahr, Dirk Bade, Karl-Heinz Krempels, and Winfried
Lamersdorf. Deployment of distributed multi-agent systems. In International
Workshop on Engineering Societies in the Agents World, pages 261–276. Springer,
2004.

7. T. Finin et al. An overview of KQML: A knowledge query and manipulation
language. Technical report, University of Maryland, CS Department, 1992.

8. Matthew Hennessy. A distributed Pi-calculus. Cambridge University Press, 2007.
9. Jomi F Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. Instrumenting

multi-agent organisations with organisational artifacts and agents. Autonomous
Agents and Multi-Agent Systems, 20(3):369–400, 2010.

10. James J Odell, H Van Dyke Parunak, Mitch Fleischer, and Sven Brueckner. Mod-
eling agents and their environment. In International Workshop on Agent-Oriented
Software Engineering, pages 16–31. Springer, 2002.

11. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems. Autonomous agents and multi-agent systems,
17(3):432–456, 2008.

12. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Rudy van Hoe, editor, Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, Eindhoven, The Netherlands, 1996.

13. A. Ricci, M. Viroli, and A. Omicini. Construenda est cartago: Toward an infras-
tructure for artifacts in MAS. Cybernetics and systems, 2:569–574, 2006.

14. Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming
in multi-agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, 2011.

15. Alessandro Ricci, Mirko Viroli, and Maurizio Cimadamore. Prototyping concurrent
systems with agents and artifacts: Framework and core calculus. Electronic Notes
in Theoretical Computer Science, 194(4):111–132, 2008.

16. Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and
Douglas D Edwards. Artificial intelligence: a modern approach, volume 2. Prentice
hall Upper Saddle River, 2003.

17. Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. Autonomous agents and multi-agent systems,
14(1):5–30, 2007.

170

