Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Ingeniería Ambiental

3.- Campus

Coatzacoalcos-Minatitlán, Córdoba-Orizaba, Poza Rica-Tuxpan, Xalapa

4.-Dependencia/Entidad

Facultad de Ciencias Químicas

5 Código	6Nombre de la experiencia	7 Area de f	ormación
5 Codigo	educativa	Principal	Secundaria
AMIA 18006	Procesos ambientales	D	No aplica

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
6	3	0	45	Ninguna

9.-Modalidad

10.-Oportunidades de evaluación

Curso- Taller ABGHJK= Todas

II.-Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

I3.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

M.C. Abril Rodríguez Guzmán, Dr. Michel de la Cruz Canul Chan, Dr. Mario Rafael Giraldi Díaz

17.-Perfil del docente

Ingeniero Ambiental o Ingeniería Química o afín a la experiencia educativa, preferentemente con maestría en Ciencias de la Ingeniería o afín, preferentemente con doctorado en Ciencias de la Ingeniería o afín

18.-Espacio 19.-Relación disciplinaria

Intraprograma educativo	Interdisciplinario
-------------------------	--------------------

20.-Descripción

La experiencia educativa de procesos ambientales correspondiente a la academia de ingeniería aplicada cuenta con 3 horas teóricas y 6 créditos. Esta experiencia educativa permitirá que el alumno conozca los conceptos básicos de los procesos ambientales existentes. Será capaz de entender y profundizar en el funcionamiento de procesos complejos y trasladar esa ideología a la ingeniería para la creación de técnicas o procedimientos capaces de degradar contaminantes o mantener el equilibrio del medio. El estudiante analizará información bibliográfica y artículos de revistas de divulgación científica, con ello será capaz de realizar discusiones grupales, resolución de ejercicios y estudios de casos de aplicación de procesos ambientales; lo cual será complemento de su evaluación, adicional a los exámenes parciales y final correspondientes.

21.-Justificación

La experiencia educativa de Procesos Ambientales, dentro del plan curricular de la carrera de Ingeniería Ambiental, provee recursos académicos al alumno en su práctica profesional. Se le proporciona al estudiante un desarrollo claro y lógico de los principios y conceptos, que le permitirán comprender los conocimientos

adquiridos en las experiencias educativas previamente cursadas que integran las diversas áreas de la Ingeniería. Lo que permitirá al Ingeniero Ambiental proponer la solución de problemas que se le presenten en el campo profesional.

22.-Unidad de competencia

El estudiante aplica el estudio de los diferentes Procesos Ambientales empleando la búsqueda de información a través del uso de medios electrónicos y/o escritos, comprendiendo los diferentes tipos de métodos y conceptos para el análisis de módulos básicos, información, técnicas de optimización y procesos ambientales para posteriormente proponer o dar seguimiento a procesos y técnicas de descontaminación. Todo esto, en un marco de apertura, respeto, colaboración y responsabilidad.

23.-Articulación de los ejes

En esta experiencia educativa se aplican los conocimientos y conceptos del análisis de módulos básicos, información, técnicas de optimización y procesos ambientales; a través de la búsqueda de información, aplicación de conocimientos para la resolución de problemas y estudio de casos y la proposición o seguimientos de soluciones en problemáticas ambientales, promoviendo y trabajando en un ambiente de respeto, colaboración, responsabilidad y disposición.

24.-Saberes

Optimización de	• Propone o da
procesos.	seguimiento a
Procesos Ambientales	procesos y técnicas de
 Análisis de procesos 	descontaminación
ambientales en agua	basados en el estudio
 Análisis de procesos 	de procesos
ambientales en suelo	ambientales.
 Análisis de procesos 	 Resuelve problemas y
ambientales en aire	analiza los resultados
	obtenidos.

25.-Estrategias metodológicas

De aprendizaje	De enseñanza
Manejo de información bibliográfica	 Plenaria
y artículos de revistas de divulgación	 Exposición con apoyo audiovisual
científica.	 Lectura comentada
 Búsqueda de información 	 Estudio de casos
Discusiones grupales	 Resolución de problemas
Resolución de ejercicios	 Discusión dirigida

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
• Libros	Libreta
 Revistas de divulgación científica 	Computadora
Biblioteca Virtual de la UV	 Videoproyector
 Videos 	Pintarrón
	 Plumones y borrador
	Internet

27.-Evaluación del desempeño

Evidencia (s) de desempeño		Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Exámenes		Asistencia	Aula	50%
Portafolio evidencias actividades ejercicios)	de (tareas, y	puntualidad, bibliografía válida, participación	Biblioteca Centro de cómputo Aula, Casa	20%
Proyecto Final		Coherencia, claridad, bibliografía válida,	Aula	30%

presentación oral y	
escrita	

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Aral M. M. (2010). Environmental modeling and health risk analysis (Acts/Risk).
 Springer, Dordrecht, NL.
- Bortz, M., Asprion, N. (2022). Simulation and Optimization in Process Engineering: The Benefit of Mathematical Methods in Applications of the Chemical Industry, Elsevier, N. Y.
- Chang, N. (2010). Systems Analysis for Sustainable Engineering: Theory and Applications (Green Manufacturing & Systems Engineering). McGraw Hill, N.Y.
- El-Halwagi M. M. (2017). Sustainable Design Through Process Integration (2nd ed), Elsevier, N. Y.
- Gaffney, J. S., & Marley, N. A. (2019). Chemistry of environmental systems: fundamental principles and analytical methods. John Wiley & Sons.
- Manahan S. (2017). Environmental chemistry, 10th edition. CRC Press LLC, Boca Raton.
- Mihelcic, J. R., Zimmerman, J. B. (2021). Environmental engineering: Fundamentals, sustainability, design, 3rd Edition. John Wiley & Sons, N.Y.
- Mott H. V. (2013). Environmental process analysis: principles and modeling. John Wiley and Sons, Hoboken.

Complementarias

- Biblioteca Virtual de la Universidad Veracruzana.
- Barberá, E. (2012). Ingeniería de los procesos con microorganismos. Principios fundamentales y simulación con Matlab. Editorial Académica Española.
- Gaffney, J. S., & Marley, N. A. (2019). Chemistry of environmental systems: fundamental principles and analytical methods. John Wiley & Sons.
- Himmelblau, D. M., & Bischoff, K. B. (2021). Análisis y simulación de procesos.
 Reverté.
- Páez Núñez, A. R. (2011). Evaluación de procesos ambientales, Corporación para el Desarrollo de la Educación Universitaria, Quito, Ecuador.

 Zaror C. 2010. Introducción a la Ingeniería Ambiental para la Industria de Procesos, Universidad de Concepción, Chile.