Programa de estudios de experiencia educativa

I.-Área académica

Área Académica Técnica

2.-Prgrama educativo

Ingeniería en Biotecnología

3.-Campus

Orizaba y Coatzacoalcos

4.-Dependencia/Entidad

Facultad de Ciencias Químicas

5Código	6Nombre de la	7Area de formación Principal Secundaria		
J. Courge	experiencia educativa			
IBCS 18004	Desarrollo Sostenible	D	No aplica	

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total de horas	Equivalencia(s)
2	0	2	30	Ninguna

9.-Modalidad

10.Oportunidades de evaluación

Taller	AGJ=Cursativa
--------	---------------

II.-Requistos

Prerrequisitos	Correquisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual/Grupal	Máximo	Mínimo
Grupal	40	10

13.-Agrupación natural de la experiencia educativa

14.-Proyecto integrador

Ciencias sociales y otros	No aplica
---------------------------	-----------

15.-Fecha

Elaboración	Modificación	Aprobación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Dra. Tania García Herrera

17.-Perfil docente

Licenciatura en Ingeniería Química o afín a la experiencia educativa, preferentemente con maestría en ciencias de la ingeniería o afín, preferentemente con doctorado en ciencias de la ingeniería o afín.

18.-Espacio

19.-Relación disciplinaria

Intrafacultades	Multidisciplinario
-----------------	--------------------

20.-Descripción

Esta experiencia educativa se localiza en el área de disciplinar, cuenta con 2 horas prácticas y 2 créditos. Su propósito es la aplicación de los principios de la sustentabilidad, así como la química verde, la normatividad vigente y las acciones que se están llevando a cabo en nuestro país.

Es indispensable para el estudiante reconocer esos principios para poder usarlos de forma adecuada en los procesos biotecnológicos. Para el desarrollo de la EE se proponen las estrategias metodológicas de resolución de desarrollo de un proyecto. Por lo tanto, el desempeño de la unidad de competencia se evidencia mediante cuestionarios, exposiciones e informes escritos.

21.-Justificación

Esta experiencia educativa permitirá utilizar en forma integral los conocimientos aprendidos en el análisis de casos reales de la región, el estado o el país, analizando los diferentes factores que pueden afectar la sustentabilidad de los procesos biotecnológicos, microbiológicos, enzimáticos, en las áreas de fermentación, bioplantas, biomedicina, biotecnología alimentaría y ambiental, lo anterior en beneficio de la sociedad y de la propia institución.

22.-Unidad de competencia

El estudiante aplica los principios del desarrollo sostenible integrando la agenda 2030 y la participación de México en la Agenda, en el diseño de equipo y operación optima de los bioprocesos tomando en cuenta la normatividad mexicana y los principios de la química verde así como manejo sostenible de emisiones, efluentes, residuos y cadena de valor reconociendo el ciclo de vida de los productos en un proyecto para el cual requerirá fuentes de información variadas (español e inglés), síntesis de información, resolución de problemas todo lo anterior apoyado de las TIC en el análisis e interpretación de resultados integrando soluciones de forma colaborativa y responsable, para contribuir al desarrollo sostenible de la sociedad.

23.-Articulación de los ejes

El eje teórico se encuentra presente en los conceptos y normatividad relacionados con la sustentabilidad, la química verde y el tratamiento de efluentes el eje heurístico a través de recopilación de información, así como su aplicación en el desarrollo de bioprocesos sostenibles axiológico trabajando en forma colaborativa con disciplina y honestidad para la operación sostenible de cada uno de los pasos que requiere un proceso biotecnológico.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
Objetivos de desarrollo sostenible Agenda 2030 Participación de México en la Agenda Los 17 Objetivos del Desarrollo Sostenible Desarrollo sostenible aplicado en la ingeniería en biotecnología Diseño de equipo Alternativas tecnológicas para la operación óptima de bioprocesos Mejoras e innovaciones tecnológicas a bioprocesos Factibilidad técnica y económica de alternativas de modernización tecnológica-sostenible	 Búsqueda en fuentes de información variadas (español e inglés) Síntesis de información Resolución de problemas Manejo de TIC Análisis e interpretación de resultados Construcción de reporte de Proyecto Presentación de proyecto 	 Ética Colaboración Responsabilidad Autoaprendizaje

Manejo sostenible de emisiones, efluentes, residuos y cadena de valor Normatividad Mexicana Casos de éxito de manejo de emisiones, efluentes, residuos Principios de la química verde Doce principios de la	
Química Sostenible	
Integración de procesos: materiales y energía Métodos punto de pliegue Balance Hídrico	
Inventario de Residuos Análisis de sostenibilidad	
de procesos Ciclo de vida de los productos	
Huella hídrica Huella de carbono	

25.-Estrategias metodológicas

De aprendizaje	De enseñanza
Exposición con apoyo tecnológico	Atención a dudas y comentarios
variado.	Recuperación de saberes previos.
Aprendizaje autónomo.	Encuadre
Aprendizaje cooperativo.	Supervisión de trabajos
Elaboración de informes	·

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
• Libros	Proyector/cañón
Diapositivas	Pizarrón
Artículos	Computadora
	• Internet
	Eminus

27.-Evaluación del desempeño

Evidencia(s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Cuestionarios	Entregados en tiempo y forma. Claridad. Suficiencia Pertinencia	Biblioteca, centro de cómputo, salón de clase y casa.	25
Tareas	Entregados en tiempo y forma. Claridad. Suficiencia Pertinencia	Biblioteca, centro de cómputo, salón de clase y casa.	25
Proyecto	Calidad de expresión oral y escrita Aplicación correcta de los saberes del curso	Biblioteca, centro de cómputo, salón de clase y casa.	50

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- CEPAL, NU. (2016). Estudio Económico de América Latina y el Caribe 2016: La Agenda 2030 para el Desarrollo Sostenible y los desafíos del financiamiento para el desarrollo. CEPAL.
- Leff, E. (2002). Saber ambiental. sustentabilidad, racionalidad, complejidad, poder.
 PNUMA.
- Mulder, Karel & Politext, Ed. (2007). Desarrollo sostenible para ingenieros. Edicions UPC.
- Vallejo, G. G. (2017). Desarrollo Sustentable Estrategia en las empresas para un futuro mejor. Alfaomega.

Complementarias

Biblioteca virtual UV

- Estrella Suárez, M. V., & González Vázquez, A. (2017). Desarrollo sustentable: un nuevo mañana. Grupo Editorial Patria.
- Matos Meléndez, B. B., & Flores Guerrero, M. A. (2016). Educación ambiental para el desarrollo sostenible del presente milenio (No. 333.707 M433e). ECOE ed.