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ABSTRACT
The aim of this study was to compare alternative models for the genetic evaluation of heifer fertility in
Simmental–Simbrah cattle. The analyses were conducted using a database with 37,390 female birth
information recorded from 1984 to 2007, and 59,018 individuals in the pedigree. Three generalized
mixed models were adjusted for a single trait in a multiracial population: linear animal, linear sire and
logistic sire. The models were analysed by restricted maximum likelihood procedure with Average
Information algorithm. Two strategies of cross-validation were carried out to evaluate the predict ability
of the models. The heritability from linear animal and sire models had lower values than that estimated
with the logistic model, 0.04 ± 0.00, 0.05 ± 0.00 and 0.20 ± 0.03, respectively. High Spearman and
Kendall correlations were observed between the ranks of breeding values (BV) estimated from the
linear and logistic sire models, 0.99 and 0.94, respectively. In contrast, these correlations were lower
between the animal and sire models, 71% and 54%, respectively. The logistic sire model was the best
estimating the BV with ancestors’ information, while the linear animal model (LAM) was the best
predicting with scattered information. In general, it was considered that best fit and prediction was
produced with the LAM.
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Introduction

Improving reproductive performance means greater benefit in
productive efficiency than what can be obtained with growth
traits (Dickerson 1970); Van Eenennaam (2013), using economic
principles, reported that improvement in reproduction can be
up to four times more important than improving traits of final
products in cow-calf systems which sale calves at weaning.

The genetic improvement of beef cattle in Mexico has
carried out by selecting in traits of growth and carcass quality;
few beef cattle breeds’ associations have included genetic
evaluations of traits related to the sexual precocity and fertility
in their improvement programs. These are complex character-
istics that are not commonly used for selection purposes but
have significant influence on the biological and economic effi-
ciency of the cow-calf system. Progress in its implementation
as a genetic performance traits has been slowed down for
several reasons: the long time that it takes to obtain relevant
information, the difficulty in measuring such traits, the low her-
itability of reproductive characteristics and statistical problems
associated with the application of linear models to binomial
traits (i.e. estimators outside the parametric ranges (0, 1), ineffi-
cient estimators due to the presence of heteroscedasticity,
association between mean and variance, etc. and biased BV).

A management tactic commonly recommended to increase
the production efficiency is culling females that do not get
pregnant within the deadlines set in production systems

(Dziuk and Bellows 1983; Azzam and Azzam 1991; MacNeil
and Vukasinovic 2011). Eliminating heifers that were not preg-
nant at an early age is equivalent to removing the herd subfer-
tile females. According to a study conducted in Montana, USA,
when a heifer fails to become pregnant in the first breeding
season, calving percentage on her productive life will be
approximately 55% (Selk 2015). Given the little inheritable
nature of this trait (<10%) (Cammack et al. 2009), using it as
improving factor does not guarantee genetic gain; the pheno-
type of a reproductive trait is not a good indicator of its
genetic merit. Selecting for this performance, animals of any
genetic potential would be eliminated, lower or higher.
Expected progeny difference (EPD) is the best option to
improve reproductive characteristics; this estimator gives a
clear picture of the genetic status of any individual within the
population.

Currently, herd fertility, heifer fertility and stayability are
main traits that researchers are exploring. Heifer fertility is a
trait included in the breeding objectives as an indicator of
sexual maturity (Shiotsuki et al. 2009); comprises puberty, ferti-
lization and the successful maintenance of pregnancy. The
heifer’s ability to calve at early age is regarded as a profitable
performance indicator.

Heifer fertility is a dichotomous variable, it is distributed as a
Bernoulli random variable; in this kind of variables there is
dependence between mean and variance and the mean takes
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values in the range 0–1. Therefore, random effects, as the addi-
tive genetic, do not have a normal distribution as continuous
variables do; this is an assumption in the standard procedures
of estimating BV and its failure to comply could result in bias.
Gianola (1982) published that variables exhibiting discontinu-
ous distributions are analysed better if a continuous underlying
distribution is postulated. One way to solve this problem is by
using nonlinear models, as logistics, where logits would be
within the limits 0 to 1, and the random effects have a
normal distribution.

The aim of this study was to compare alternative models for
the genetic evaluation of heifer fertility in Simmental–Simbrah
cattle, allowing using as much information as possible and
having less bias. For this purpose, goodness of fit, prediction
ability and rank of BV of three models were compared; an
animal linear model, a sire linear model and a sire logistic model.

Material and methods

Population of study

Information was provided by The Mexican Simmental–Simbrah
Association; consisting of 37,390 useful records of heifers that
were took from 1984 to 2007. Table 1 shows the structure
and descriptive statistics of the database.

Data editing

Basic depuration of data included eliminating individualswithout
parents’ identification, coming from embryo transfer technique
or females which did not have production or progeny records.
Genetic analysis was conducted using a database of multibreed
heifers and 59,018 individuals in the pedigree.

Trait definition

To define fertility (FERT), records were coded as ‘1’ when heifer’s
first calving occurred before 1270 days old; otherwise, fertility
was coded as ‘0’.

Statistical analysis

To prepare data for genetic analysis, preliminary linear models
were fitted to identify important fixed effects for the expression

of FERT (Ghorbani et al. 2013), with the GLM procedure of SAS
(2010).

Models for univariate analyses

Three generalized mixed models were adjusted for the genetic
evaluation of heifer fertility as a single trait, in a multiracial popu-
lation of Simmental–Simbrah cattle: (1) linear animal model
(LAM), (2) linear sire model (LSM) and (3) logistic sire model
(BSM). The logistic animal model was not included because it
did not converge; Jamrozik et al. (2012) and Abdullahpour
et al. (2006) mentioned that in using animal models with
threshold procedures it is frequent that convergence is not
achieved, due to the frequency of extreme subclasses, in which
all the observations are either zero or one (Misztal et al. 1989).

The fixed effects considered for all models were: contempor-
ary group (CG) and covariates: age at calving of cow’s dam,
linear (MA) and quadratic (MA2), Simmental breed genes pro-
portion (GP), heterozygosis (Het) and recombination loss (RL).
CG was defined as an effect determined by the herd, year
and season of heifer’s birth. Herd identification was assigned
taking into account the number designated to the heifer’s
owner at its birth and who remained as its owner at weaning.
CGs with less than four records were eliminated. Four birth
seasons were created: (1) January–March, (2) April–June, (3)
July–September and (4) October–December. Age of the dam
at the heifer birth was calculated in days.

The fixed effects GP, Het and RL were included in the model
with the objective of performing the multiracial evaluation, in
this way it was possible to include more animals, improve the
evaluation of purebred individuals and simultaneously
compare Simmental and Simbrah cattle. These effects were esti-
mated for each animal as:

GP = Sirei + Dami

2
,

Het = (Sirei × (1− Dami))+ (Dami × (1− Sirei)),

RL = (Sirei × (1− Sirei))+ (Dami × (1− Dami)),

in which Sirei and Damiwere the proportion of Simmental in the
sire and dam, respectively.

For the generalized linear mixed models analysis of LAM and
LSM, an identity link function was used to connect expected
value of the random variable FERT with a linear function of expla-
natory variables; on theother hand, in the case of BSM the logit link
function was utilized. For all models, the linear predictors were

h = Xb+ Za,

where the conditional distribution for y|a was binomial, with par-
ameter π for probability of calving; and the η = g(π) link functions;
β was a p × 1 vector for fixed effects; a was a q × l vector of direct
genetic random effect (animal or sire, depending on the corre-
sponding model); X and Z were incidence matrices that associate
the data with the related effects. It was assumed that random
effects followed a multivariate normal distribution. The mixed
model normal equations were as follows:

X ′H′R−1HX X ′H′R−1HZ
Z′H′R−1HX Z′H′R

−1
HZ + G−1

[ ]
b̂
Ŝ

[ ]
= X ′H′R−1y∗

Z′H′R−1y∗

[ ]
,

Table 1. Pedigree and data structure: mean, standard deviation (SD), range,
minimum (Min) and maximum (Max) for heifer fertility of Simmental–Simbrah
beef cattle.

Pedigree structure Animal model Sire model

Number of animals in pedigree 59,018 40,820
Number of animals with productive records 37,390 37,390
Number of sires in pedigree 3430 3430
Number of sires with progeny in the data 3430 3430
Number of dams in pedigree 26,101 0
Number of dams with progeny and own
productive record

1524 1524

Statistical average for both models Mean SD Range Min Max

Calves/sire 10.81 17.64 313 1 314
Sires/year/herd 4.38 3.77 29 1 30
Active years/sire 4.08 3.13 17 1 18
Dam/sire 10.82 17.64 313 1 314
Calves/dam 1.42 0.78 8 1 9
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where

H = ∂m

∂h′ =
∂

ehi

1+ ehi

∂hi
,

R = var(y|u)
and

y∗ = y − m+ Hh.

Random effects’ means were equal to zero and the structure of
(co)variance used was

a
e
|s2

a , s
2
e

( )
� N 0,

As2
a 0

0 Ins2
e

( )[ ]

where A is the additive numerator relationship matrix (59,018 ×
59,018 order for the animal model and order of 40,820 × 40,820
for the sire models), s2

a is the direct additive genetic variance,
s2

e is the residual variance and In is the identity matrix with order
equal as number of records (37,390). It was assumed that genetic
effects, animal or sire, were independent of residuals in the
model. The LAM and LSMwere run with responses binomially dis-
tributed and with no adjustment to residual variance. For the logit
function of logistic sire model, errors had a standard logistic distri-
bution with θ mean and variance was set to π2/3 (Guerra et al.
2006; Williams 2011).

All models were analysed with the ASREML software
(Gilmour et al. 2009). Genetic and phenotypic parameters
were estimated by restricted maximum likelihood using an
Average Information (AI) algorithm. The convergence for maxi-
mization of the likelihood function was presumed when the
REML log-likelihood last changes less than 0.002 × iteration
number and the individual variance parameter estimate
changes less than 1%.

Estimates of heritability (h2) for linear models were evalu-
ated in the observable scale, while the logistic model was per-
formed on the logistic scale. Formulas used for calculating h2

will be described next for the LAM, LSM or BSM, respectively.

ĥ2A = ŝ2
a

ŝ2
a + ŝ2

e

, ĥ2S =
4ŝ2

a

ŝ2
a + ŝ2

e

, ĥ2S =
4ŝ2

a

ŝ2
a + p2/3

,

The h2 was set to the same scale for comparison; estimators
obtained from linear models were converted to the underlying
scale using the formula (Van Vleck 1972; Roff 2001; Martinez
et al. 2005; Guerra et al. 2006).

h2
u = h2op(1− p)

z2
,

where h2u is the underlying scale heritability, h2
o is the observed

scale heritability, p is the proportion of individuals in the popu-
lation who calved and z is the standard normal curve ordinate
at threshold point where it cuts an area equals to p.

Comparison of models

The models were compared based on their goodness of fit; two
information criteria were used to estimate overall fit of each
model, Akaike (AIC) and Bayesian (BIC); the following formulas

were used:

AIC = −2 log(L)+ 2p,

BIC = −2 log(L)+ p× log(n),

where L is the likelihood, p is the number of parameters in the
model and n is the number of observations. Objective of the AIC
was to identify the best model generated by data and the BIC
was to find the best prediction model (Crawley 2002). The
models with the lowest AIC or BIC were considered the best
models.

Models were also compared through the animals’ rank
obtained on the basis of BV estimated with the complete data
set; CORR procedure of SAS (2010) software was used to calcu-
late two nonparametric measures of association, rank corre-
lation coefficient of Spearman (CORS) and the tau-b of
Kendall (CORK); both statistics were used to evaluate the exist-
ing correspondence among BV obtained from the three models.

The ability of models to predict BV was assessed by k-fold
cross-validation approach; two strategies of cross-validation
were conducted. In the first approach, all data set was divided
into two groups, one with animals born before 2004 who
formed the training group with approximately 75% of the
records, and the remaining individuals formed the test group;
it was a temporary strategy (generational) that evaluates how
well each model predicts BV, when the values to predict were
from young animals through the phenotype of their ancestors
and relatives relationship information. In the second assay,
the entire data set was randomly divided into four subgroups
of equal size, for this, random sampling without replacement
was applied; each of these subgroups served as test group
while the other three came together to form the corresponding
training group; it was used as a strategy to evaluate the predic-
tive ability of the models when 25% of the information was not
available. Afterwards, in both appraisals, the training group
served to estimate all fixed and random effects; which they
were used to predict observations in the testing group.

Two criteria were used to compare the predictive ability of
the models; the mean-square error of prediction (MSEP) and
the Pearson correlation (CORR). The MSEP for each iteration
was calculated by the formula:

MSEPi = 1
n

∑n
i=1

(yi − ŷi)
2,

where yi is the observed response, ŷi is the predicted response
and n is the number of data in the test subset. The ŷ for individ-
ual i within a test group was derived as the sum of predicted
effects over all effects estimated in the training set. In each
training analysis, the data excluded one group to train on the
remaining groups to estimate independent effects, which
were then used to predict response of individuals from the
omitted group (validation set). The MSEP for each model was
the arithmetic mean of its k-MSEPi to obtain a single result;
model with the lowest MSEP value was the one with better pre-
dictive ability.

MSEP = 1
k

∑k
i=1

MSEPi.
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Pearson’s correlation was used to estimate the existing associ-
ation between the BV observed and those predicted for each
subgroup in every model; test data served to obtain observed
BV, and training data for predicted ones. Similarly, to MSEP,
arithmetic mean of the CORR of k subgroups served as single
value to compare the models.

ry,ŷ =
1
n

∑n
i=1

cov(y, ŷ)
sysŷ

,

where cov(y, ŷ) is the estimated covariance between the
observed BV, and those predicted, σy is the standard deviation
of the observed BV, and sŷ is the standard deviation of pre-
dicted BV ones; n is the number of records in the test or training
subgroup. Decision criterion was: the model with the highest
correlation was the one who had better prediction ability.

Results and discussion

Parameter estimation and model fitting

The mean and the variance obtained for the fertility of the
heifers were 0.271 and 0.198, respectively. Thirty percent of
heifers calved before 1270 days old. Figure 1 shows the
genetic trends of fertility in the Simmental and Simbrah

heifers based on EPD estimated with the LAM for heifers born
between 1984 and 2007. No clear genetic trend for both
breeds was observed.

Variance components estimated with different models could
not be directly compared because they belong to different dis-
tributions. It is more relevant if the comparison is between
ratios of two components, as it would be for h2 (Abdollahi-Arpa-
nahi et al. 2013), and is advisable to put them in the same scale
(Dempster and Lerner 1950; Van Vleck and Gregory 1992).

The heritabilities calculated with the three models are pre-
sented in Table 2. Differences were found between h2 obtained
from each distribution: lower values were obtained from the
linear models than with the logistic models. The estimated h2

for LAM, LSM and BSM was 0.04, 0.05 and 0.20, respectively;
the LAM and LSM estimates were converted to a linear scale.
Similarly, Sun and Su (2010) reported that the heritabilities for
reproductive traits estimated with logistic models were higher
than those from linear models. The heritabilities’ estimates
obtained from the linear models in the observable scale were
one-third of that obtained with BSM; when they were trans-
formed to the underlying scale, this proportion was reduced
to a quarter, all of them were less than 0.05. Guerra et al.
(2006) found the same differences that we found in this
study, between h2 estimates from linear models and from

Figure 1. Genetic trends of heifer fertility based on expected progeny differences (EPD) using the animal linear (ALM), sire linear (SLM) and sire logistic (SBM) models for
Simmental and Simbrah breeds.
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threshold models for multibreed beef cattle fertility; but h2 of
the LAM was higher than h2 of sire models, indicating that h2

estimated for these characteristics obtained with binomial
data in the linear models was lower when it was converted to
a linear scale, 0.07 vs. 0.04 for LAM and 0.09 vs. 0.05 for LSM;
this may indicate that the additive variance estimator was con-
founded partially with nonadditive genetic variance (Gianola
1982). In a simulation study, Hoeschele and Tier (1995) deter-
mined that animal model produced a greater bias in the esti-
mate of h2 than the sire model; this in small progeny groups
(<40), like in our study. Divergences in the h2 were also found
when the type of model was taking into account; h2 obtained
with the LAM was smaller than that estimated using a linear
model but, as expected, the difference was lower between
the underlying heritabilities. Similarly, in a simulation study,
Van Vleck and Gregory (1992) found that h2 was overestimated
when it was calculated with binomial data by LAM, and then
transformed to the underlying scale. An interesting point to
consider in this study was the moderate h2 obtained with the
logistic model; h2 calculated by the linear models and then
transformed represented one quarter of h2 estimated by the
logistic model. As in this study, Doyle et al. (1996, 2000),
Djemali et al. (1987), Buddenberg et al. (1989), Evans et al.
(1999) and Snelling et al. (1996) found a moderate h2 (> 0.20);
likewise, the h2 in the underlying scale of nonlinear models
was greater than that calculated on the observed scale by
linear models, and they attributed this difference to the lower
prediction accuracy of the latter.

Goodness of fit

Table 2 shows the log-L values of the univariate analysis for
each proposed model, and the information criteria (AIC and
BIC). In our study, these two criteria were used to compare
the models; this was possible because their likelihood functions
were similar and because the same records were used; the
results indicated that there were small differences among the
adjustment of the three models.

The predictive ability of the three models was evaluated con-
sidering all the information of the database. The model that

showed greater MSEP was the LAM, followed by the BSM and
LSM, with 11.12, 0.01 and 0.0001, respectively. CORR coeffi-
cients, obtained between the observed and adjusted values,
indicated a different situation for the models, LAM had the
best fit, followed by BSM and then LSM, with coefficients of
0.67, 0.63 and 0.62, respectively. Considering the information
criteria (AIC and BIC), MSEP and CORR, the model with the
best fit was LAM.

Prediction of random effects

From the point of view of genetic improvement, the differences
in the rank of BV between models were relevant. The corre-
lations CORS and CORK between predicted breeding values
(PBV) obtained from the different models with all records avail-
able are presented in Table 3. A high correlation was observed
between LSM and the BSM of 0.99 for CORS and of 0.94 for
CORK, indicating that small differences between the rank of
the PBV of the two sire models are expected. Similar results
were obtained by Sun and Su (2010), they used the entire data-
base in the genetic evaluation of success to first service, and
they suggest that with a database large enough, the realign-
ment in the ranks would not be significant. The correlation
between the PBV obtained with the sire models and the gener-
ated with the animal model were in average 0.71 for CORS and
0.54 for CORK. The difference between the ranges of PBV was
greater when it was obtained from the comparison between
the animal model and any of the two sire models, than when
this was the result of the contrast made between the sire
models, even though the latter have different linking functions.
Therefore, it was considered that the rank of PBV was affected
more meaningfully by the relationship information than by

Table 2. Variance components’ estimators of restricted maximum likelihood and heritabilities of heifer’s fertility for the models: linear animal (LAM), linear sire (LSM) and
logistic sire (BSM).

LAM LSM BSM

Additive variance 0.00948 (0.00136) 0.01211a (0.00192) 0.69373a (0.10699)
Error variance 0.12848 (0.00152) 0.13516 (0.00107) 3.2865b

Phenotypic variance 0.13796 (0.00108) 0.13819 (0.00109) 3.4634 (0.02675)
Heritability 0.0687 (0.0097)c 0.0876 (0.0137)d –
Underlying scale heritability 0.036 (0.0052)e 0.047 (0.0073)e 0.2003 (0.0293)3

Heterogeneous variance factor (Deviance/DF) – – 0.79
Number of records 37,390 37,390 37,390
log-L 2797.61 2791.05 2834.35
AIC 84.33 100.33 116.33
BIC 68.36 68.36 68.33

Note: Models with lower values in AIC or BIC had best fit (bold font).
a4(Sire variance).
bError variance restricted to π2/3.
c(Additive variance)/(additive + error variance).
d4(sire variance)/(sire variance + error variance).
eTransformation: h2b = h2b(p(1− p)/Z2, where h2u is the h

2 in the underlying scale, h2b is the h2 in the binomial scale, p is the fraction of cows that calved and Z is the
height to the ordered at the truncation point for a p area under the normal curve.

Table 3. Correlations of Spearman rank (above diagonal) and Kendall Tau-b (below
diagonal) between the predicted breeding values obtained from the models: linear
animal, linear sire and logistic sire for heifer fertility.

Model Linear animal Linear sire Logistic sire

Linear animal 0.71 0.71
Linear sire 0.54 0.99
Logistic sire 0.54 0.94
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the type of distribution used in the estimation. Ramirez Val-
verde et al. (2001) found that when reliability of the sires
changes, the rank of PBV also changed and, in their case, as
the information was increased, the CORS of LAM gradually
improved to the point that was similar to the nonlinear sire
model. Contrary to what is stated here, the results obtained
by Vazquez et al. (2009) suggest that the model type, linear
or nonlinear, has an impact on the arrangement of PBV and
therefore, correlations may change.

Evaluation of predictive ability with cross-validation

The results of the predictive ability of procedure 1 are shown in
Table 4; and of procedure 2 are in Table 5. Using the MSEP as
evaluation criterion, it was observed that the best fit was
obtained with the BSM, secondly the LSM and finally LAM
with 0.02, 3.19 and 27.91, respectively. With regard to the
Pearson correlation for evaluating model fit, it was found that
fit’s differences between models were small, two percentage
points in CORS, and the BSM had the best prediction according
to the CORK indices, followed by LSM and then by LAM with
0.35, 0.26 and 0.23, respectively. Unlike what was observed in
the assessment of the adjustment using all data set, judging
with SMPE and CORR criteria, the BSM performed the best pre-
diction of the BV with young animals and had the best associ-
ation between PBV’s ranks of the subpopulations of training
and test, according to nonparametric rank correlations.

As in procedure 1, MSEP and CORR were used in procedure 2
to investigate the predictive ability of the models, and CORS
and CORK to compare the association between the dispersion
of the PBV. LSM had the best estimates of the association
between the PBV predicted with all information and those pre-
dicted with the reduced information for the three models; we
consider that this model made the best prediction of the PBV
when a quarter of the information was not included in the
evaluation, even when LAM had greater value of MSEP than
LSM.

The results are shown in Tables 4 and 5. Although the great-
est MSEP obtained was for LAM, we considered that it was the
model that best predicted the PBV when the information was
reduced; this model also had the best estimates of association
between PBV’s ranks. Correlation coefficients estimated for
LSM and BSM were very similar and 29% lower than those
obtained with LAM. The MSEP obtained from the assessments
made on the four subpopulations of each linear model, LAM

and LSM, was of small magnitude and constant within model.
Contrary to the above, the MSEP for evaluations conducted
with BSM was above than those obtained in the linear
models, and very divergent between them, this probably
caused by sampling. Opposite form what it was found,
Vazquez et al. (2009) obtained similar MSEP for both sire
models, linear and logistic. In their cross-validation test, Sun
and Su (2010) estimated comparable CORS, but with slight
advantage in stability for the logistic sire model over the LSM.

Like us, Ramirez-Valverde et al. (2001) evaluating calving dif-
ficulty found that increasing the number of records per sire
improved the predictability of the animal model with respect
to the nonlinear sire model, with the difference that in our
case, LAM exceeded the predictability of BSM, while in their
study, the performance of the models ended up being similar.
Divergence between the two cross-validation procedures in
this study lies primarily in the number of progeny per sire;
although procedure 1 measured the contribution of recent
records in the estimation of PBV, also has implicit a greater
reduction of progeny per sire than it was present in procedure
2; the CORS of LAM in the latter procedure, doubled the esti-
mate of the first, while in the case of BSM this increase was
only 60%. These authors found a better predictive ability of
the animal model over the sire model, as can be seen in the
results obtained in procedure 2, where the animal model has
better performance regardless of which of the two sire
models was compared to.

Table 4. Cross-validation by using different prediction criteria for all tested models
of heifer fertility in Simmental–Simbrah beef cattle (procedure 1).

LAMa LSMb BSMc

Sub-sample size 12,475 12,475 12,475
MSEPd 27.91 3.19 0.02
CORRe 0.35 0.33 0.35
CORSf 0.33 0.35 0.35
CORKg 0.23 0.26 0.35
aAnimal linear model.
bSire linear model.
cSire logistic model.
dMean-square error of prediction.
ePearson’s correlation.
fSpearman correlation.
gKendall correlation.

Table 5. Cross-validation by using different prediction criteria for all tested models
of heifer fertility in Simmental–Simbrah beef cattle (procedure 2).

LAMa LSMb BSMc

Sub-sample 1
N 5168 5168 5168
MSEP 3.62 0.74 81.06
CORR 0.72 0.54 0.56
CORS 0.68 0.50 0.52
CORK 0.51 0.36 0.37
Sub-sample 2
N 5234 5234 5234
MSEP 10.8 1.70 83.90
CORR 0.74 0.55 0.55
CORS 0.72 0.52 0.52
CORK 0.54 0.38 0.38
Sub-sample 3
N 5158 5158 5158
MSEP 6.64 1.56 130.94
CORR 0.73 0.51 0.52
CORS 0.70 0.47 0.47
CORK 0.52 0.35 0.34
Sub-sample 4
N 5166 5166 5166
MSEP 7.09 2.75 248.55
CORR 077 0.61 0.59
CORS 0.74 0.56 0.57
CORK 0.55 0.41 0.41
Sample mean
MSEPd 7.04 1.69 136.11
CORRe 0.74 0.55 0.56
CORSf 0.71 0.51 0.52
CORKg 0.53 0.38 0.38
aAnimal linear model.
bSire linear model.
cSire logistic model.
dMean-square error of prediction.
ePearson’s correlation.
fSpearman correlation.
gKendall correlation.
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Conclusions

The results showed that the h2 of heifer fertility was better esti-
mated with BSM than with the linear models, although this did
not lead to a better prediction of PBV; the estimation of the PBV
was not significantly affected by the distribution of the adjusted
variable; on the other hand, the quality of information and con-
nectivity impacted on the prediction and ranking of the PBV.
Taking into account all the criteria used to compare the
models, it can be concluded that the genetic evaluation of Sim-
mental heifer fertility can be performed better with LAM, pro-
vided that the database is large enough; the interpretation of
the logistic evaluation results is more complicated and, on the
other hand, the number of animals with EPD was higher in
the animal model than in the sire models.
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