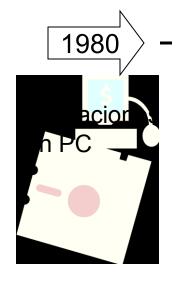
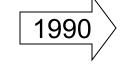

El Producto *Pressman, Roger (2002)*


- ¿Qué es el software?
 - El producto elaborado por un Ingeniero de Software
- ¿Quién lo hace?
 - El ingeniero de software
- ¿Por qué es importante?
 - Afecta a todas las actividades
- ¿Cuáles son los pasos?
 - Los marcados por algún enfoque de IS
- ¿Cómo se asegura de su calidad?
 - Aplicando métodos, metodologías, procesos, métricas, etc. de IS


Evolución del Software

Aplicaciones numéricas específicas

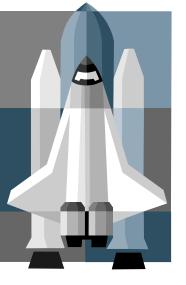
Aplicaciones numéricas y administrativas ad hoc Se habla de una sociedad de información, grandes BD

Internet

Y2K

Aplicaciones basadas en componentes

Sistemas cliente/servidor


Características del Software

Hardware

- Sistema físico
- Proyectos de fabricación
- Se desgasta, aumento de errores al paso del tiempo
- Uso pesado de componentes

Software

- Sistema lógico
- Proyectos de Ingeniería
- No se desgasta, no sufre nuevos errores (sin mantenimiento)
- Software a la medida, aún con componentes

Áreas de Aplicación del Software

Software de sistemas. Para apoyar a otros sistemas: SO, compiladores, ligadores, telecomunicaciones, etc

Software de tiempo real. Coordina/analiza/controla sucesos que ocurren en el mundo real conforme ocurren.

Software de gestión. De tipo comercial, para gestionar la toma de decisiones o facilitar operaciones comerciales.

Software de ingeniería y científico. Algoritmos de tipo numérico. Astronomía, vulcanología, biología molecular, genética, etc. Han evolucionado a herramientas tipo CAD.

Software empotrado. Reside en memoria de sólo lectura y se usa para controlar productos y sistemas de los mercados industriales y de consumo.

Software de PC. Ha germinado en las últimas dos décadas. Hojas de cálculo, procesadores de texto, financiero, de gestión de BD.

Software basado en la Web. Para ser accedido por cualquier comunidad. Uso de instrucciones ejecutables en HTML, Perl, Java, etc.

Software de IA. Uso de algoritmos complejos: SE, reconocimiento de patrones, redes neuronales, prueba de teoremas, juegos representativos, tratamiento de LN.

Crisis del software

- El software no está en crisis ya que no está en un punto crucial o momento decisivo.
- Lo que se tiene es una aflicción crónica, ya que no funciona correctamente y los métodos todavía no son los adecuados.
- Sin embargo, se prospera y poco a poco se encontrarán los remedios.

Mitos y realidades de la gestión

- M: Ya son suficientes los libros y métodos existentes.
- R: En muchos casos sí, pero no en todos.
 Sin embargo, lo más grave es que NO se leen, entienden ni aplican.
- M: Se tiene el hardware de última moda.
- R: Se necesita más del software de apoyo para realizar productos con alta calidad.
- M: Si se está acabando el tiempo contratar más gente
- R: Añadir gente sólo lo retrasará más.

Mitos y realidades del cliente

- M: Con una declaración general de los objetivos es suficiente para empezar a escribir los programas.
- R: Es necesario una declaración formal y detallada de los requerimientos.
- M: Los requerimientos cambian continuamente, pero su cambio es fácil.
- R: El impacto es mayor conforme ¿a qué?

Mitos y realidades del desarrollador

- M: Una vez terminado el programa y funcionando termina su labor.
- R: Del 60 al 80% del esfuerzo para que se liberé bien un software ocurre después de haberlo entregado por primera vez
- M: Hasta que no se tiene el sistema ejecutándose No se puede comprobar su calidad.
- R: Mediante técnicas, como la RTF, se puede ir revisando la calidad.

Mitos y realidades del desarrollador

- M: Lo único que se entrega al terminar el producto es el ejecutable.
- R: Se debe entregar varios tipos de documentación y programas fuente, según lo pactado.

