
ACTIVIDADES TSF

ACTIVIDAD 1

Analizar el rebote vertical, completamente elástico, de una bola sobre el suelo, como un movimiento oscilatorio. Con lo anterior determinar los puntos extremos y el punto de equilibrio estable.

ACTIVIDAD 2

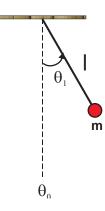
Se tiene un resorte con una constante elástica $K=0.2~\frac{N}{m}$, en posición horizontal, con uno de sus extremos fijo y el otro extremo sujetando un bloque de masa M=0.5~kg, como se muestra en la figura

La posición A indica la posición de equilibrio, mientras que la posición B indica al bloque en el instante $t_1=0$, en cual tiene una velocidad $v_1=1.5~\frac{m}{s}$ hacia la izquierda, encuentre:

- a) La frecuencia angular ω
- b) La frecuencia f
- c) El periodo T
- d) La amplitud A
- e) El ángulo de fase φ₀

ACTIVIDAD 3

De acuerdo al problema anterior:


- a) Obtenga las ecuaciones de movimiento del sistema masa-resorte
- b) Calcule la posición y la velocidad del bloque al tiempo $t_2 = 10 s$

ACTIVIDAD 4

De acuerdo al problema anterior:

- a) Obtenga la velocidad máxima que alcanza el bloque
- b) La energía potencial máxima
- c) Los valores de la energía cinética y de la energía potencial en el punto x = 0.2 m

Para el péndulo simple con pequeñas oscilaciones que se muestra en la figura de abajo, la velocidad angular al tiempo $t_1=0$ es $w_1=2\frac{rad}{s}$, la posición angular es $\theta_1=15^\circ$

Siendo $\ell=1.2\,m$ la longitud y $m=0.25\,kg$ la masa del péndulo, obtenga:

- a) La frecuencia angular ω
- b) la frecuencia f
- c) El periodo T
- d) El ángulo de fase ϕ_0
- e) La amplitud A

ACTIVIDAD 6

De acuerdo al problema anterior:

- a) Obtenga las ecuaciones de movimiento del péndulo simple
- b) Calcule la posición y la velocidad del péndulo al tiempo $t_2 = 20 s$

ACTIVIDAD 7

De acuerdo al problema anterior:

- a) Obtenga la velocidad máxima que alcanza el bloque
- b) La energía potencial máxima
- c) Los valores de la energía cinética y de la energía potencial en el punto $\theta = -$ 45 $^{\circ}$

ACTIVIDAD 8

A partir de los parámetros: amplitud A=5~m , velocidad $v=100~\frac{m}{s}$ y número de ondas $k=10~\frac{ciclos}{m}$

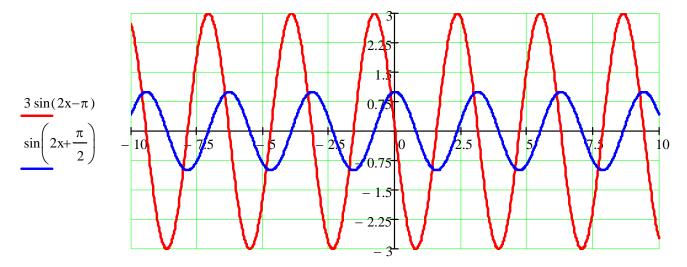
- a) determine los demás parámetros que caracterizan a la onda Si la onda tiene su inicio en x = 2 m
 - b) obtenga el ángulo de fase $arphi_0$

ACTIVIDAD 9

A partir de los parámetros: ángulo de fase $\varphi_0=\frac{\pi}{3}$, amplitud A=0.5~m, frecuencia angular $\omega=\frac{2}{3}\pi~\frac{rad}{s}$ y longitud de onda $\lambda=0.02~m$

a) determine los demás parámetros que caracterizan a la onda

Obtenga la ecuación de la onda que tiene número de ondas k=7 $\frac{ciclos}{m}$, ángulo de fase $\varphi_0=\frac{\pi}{2}$ y amplitud A=0.5 m


ACTIVIDAD 11

Se tiene la ecuación de onda y(x, t) = 3Sen(2x + 5t), obtenga:

- a) La frecuencia angular ω
- b) El número de ondas k
- c) el ángulo de fase φ_0
- d) La frecuencia f
- e) El periodo T
- f) La amplitud A
- g) La longitud de onda λ
- h) La velocidad de propagación v

ACTIVIDAD 12

Se tienen las siguientes ondas:

 \mathbf{X}

Dibuje la superposición resultante y remarque, sobre el eje horizontal, a los intervalos de interferencia destructiva

ACTIVIDAD 13

Resuelva el siguiente cuestionario

- a) ¿Cuál es el origen del campo electromagnético?
- b) ¿Cómo se generan las ondas electromagnéticas?
- c) ¿Qué es la Luz?
- d) Enuncie tres fuentes de luz
- e) Escriba la velocidad de la luz en el vacío
- f) Calcule la velocidad de la luz en un medio con índice de refracción $n_1 = 1.2$

ACTIVIDAD 14

Resuelva el siguiente cuestionario

- a) ¿Es la luz, en algún momento, un haz de fotones?
- b) ¿Qué utilidad tiene el suponer que la luz es un haz de fotones?

- c) ¿en una onda electromagnética, qué disposición geométrica tiene el campo eléctrico con respecto al campo magnético?
- d) ¿en una onda electromagnética, cuál es el ángulo de fase entre el campo eléctrico y el campo magnético?
- e) ¿Qué es y qué utilidad tiene el espectro electromagnético?

Resuelva el siguiente cuestionario

- a) ¿En qué consiste un espectro de emisión?
- b) ¿En qué consiste un espectro de absorción?
- c) ¿Cuál es la diferencia entre un espectro continuo y uno discreto?

ACTIVIDAD 16

Resuelva el siguiente cuestionario

- a) ¿En qué consiste una onda plana?
- b) ¿En qué consiste una onda esférica?
- c) ¿En qué consiste una onda elíptica?

ACTIVIDAD 17

- a) Dibuje frentes de onda planos y agregue sus respectivos rayos
- b) Dibuje frentes de onda esféricos y agregue sus respectivos rayos

ACTIVIDAD 18

Se tiene una ambulancia que avanza hacia nosotros a una velocidad $v_{fuente}=100\frac{Km}{hr}$, y su sirena emite ondas sonoras con una frecuencia f=4000~Hz, si la velocidad del sonido en el aire es $v_{onda}=340\frac{m}{s}$ obtenga

- a) La frecuencia f' con la cual escuchamos la sirena
- b) La longitud de onda λ' con la que nos llega el sonido de su sirena
- c) Calcule la frecuencia f'' que escuchamos de la sirena una vez que la ambulancia ha pasado y se está alejando de nosotros

ACTIVIDAD 19

Un observador se mueve a una velocidad de $v_0=42\,\frac{m}{s}$ hacia un trompetista en reposo. El trompetista está tocando (emitiendo) la nota '**La'** cuya frecuencia es $f=440\,\mathrm{Hz}$. ¿Qué frecuencia percibirá el observador, sabiendo que la velocidad del sonido es $v=340\,\frac{m}{s}$

ACTIVIDAD 20

Un haz de luz con longitud de onda $\lambda=1.5~\frac{m}{s}$ viaja en el vacío con velocidad $c=3\times10^8~\frac{m}{s}$, luego parte del haz penetra al medio translúcido '1' de índice de refracción $n_1=2.42$ (diamante) con un ángulo de incidencia $\theta_i=45^\circ$

- a) Obtenga el ángulo de refracción θ_r
- b) Calcule la velocidad del haz de luz en el medio '1' (diamante)
- c) Determine la longitud de onda λ_1 que el haz adquiere al viajar en el medio '1'
- d) Si la permitividad eléctrica del diamante tiene un valor entre 5.5 y 10, considerando el valor $\varepsilon = 5.585.5$, calcule el valor de su permeabilidad magnética

ACTIVIDAD 21

Calcule la velocidad y la longitud de onda de la luz en el cuarzo

ACTIVIDAD 22

Calcule el ángulo de refracción que se tiene cuando un haz de luz pasa del cuarzo al aire

Resuelva el siguiente cuestionario

- a) ¿Cómo distingue cóncavo de convexo?
- b) ¿En qué consiste la aberración cromática?
- c) ¿En qué consiste la aberración esférica?
- d) ¿Porqué es mejor un espejo parabólico que un espejo esférico?

ACTIVIDAD 24

se tiene un espejo esférico con un objeto a una distancia o = 35 cm y la imagen se forma a una distancia i = 70 cm del mismo lado del objeto pero invertida, calcule

- a) El foco del espejo
- b) El radio del espejo
- c) dibuje los rayos principales
- d) Calcule la proporción entre las alturas del objeto y de la imagen

ACTIVIDAD 25

se tiene un espejo esférico con un objeto a una distancia o=15 cm a la izquierda del espejo y la imagen se forma a una distancia i=25 cm a la derecha del espejo, la imagen está aumentada y es derecha (**no** invertida), calcule

- a) El foco del espejo
- b) El radio del espejo
- c) dibuje los rayos principales
- d) Calcule la proporción entre las alturas del objeto y de la imagen

ACTIVIDAD 26

Se coloca un objeto a una distancia 'o' de un espejo de radio R = 50 cm, la imagen se forma invertida a una distancia i = 40 cm del espejo y al mismo lado del objeto, si la imagen es invertida y real, determine

- a) La distancia 'o'
- b) El tipo de espejo
- c) El foco del espejo
- d) La proporción entre las alturas del objeto y de la imagen
- e) Haga un diagrama del sistema con los rayos principales

ACTIVIDAD 27

Resuelva el siguiente cuestionario

- a) ¿Porqué es mejor trabajar con lentes delgadas?
- b) Enuncie los tipos de lentes esféricas
- c) Enuncie los diferentes tipos de aberraciones que ocurren con las lentes esféricas
- d) ¿En qué consiste la aberración cromática?

ACTIVIDAD 28

Se tiene un objeto a una distancia $o = 50 \ cm$ de una lente convergente, si la imagen se forma a una distancia $i = 25 \ cm$ de la lente, obtenga

- a) El foco f de la lente
- b) El radio R de curvatura de las dos superficies esféricas de la lente
- c) El aumento lateral de la lente
- d) El poder óptico de la lente

ACTIVIDAD 29

Se tiene un objeto a una distancia $o = 100 \ cm$ de una lente divergente, si la imagen se forma a una distancia $i = 40 \ cm$ de la lente, obtenga

a) El foco f de la lente

- b) El radio R de curvatura de las dos superficies esféricas de la lente
- c) El aumento lateral de la lente
- d) El poder óptico de la lente

Haga un esquema de los rayos principales y de la imagen formada por una lente con foco f = -20 cm con un objeto de altura h = 30 cm que se encuentra del lado izquierdo de la lente a una distancia o = 50 cm

ACTIVIDAD 31

Realice un diagrama a mano de un microscopio y escriba las distancias focales adecuadas para cada uno de las lentes que constituyen el sistema

ACTIVIDAD 32

Realice un diagrama a mano de un telescopio de Galileo y escriba las distancias focales adecuadas para cada uno de las lentes que constituyen el sistema

ACTIVIDAD 33

Realice un diagrama a mano del ojo humano y escriba los diferentes problemas que puede tener en su agudeza visual, describiendo con mucha brevedad en qué consiste cada una de esas afecciones

ACTIVIDAD 34

Diseñe un problema sobre la ley de Lambert-Bouguer-Beer y resuélvalo

ACTIVIDAD 35

Investigue y conteste:

- a) ¿En qué consiste el efecto Tyndall?
- b) ¿Bajo qué circunstancias se produce el efecto Tyndall?
- c) Escriba 3 ejemplos, en la naturaleza, del efecto Tyndall

ACTIVIDAD 36

Investigue lea, conteste y resuelva:

- a) ¿En qué consiste el fenómeno de difracción?
- b) Enuncie los diversos tipos de difracción
- c) ¿Para qué sirven los experimentos de difracción?
- d) ¿Qué es una red de difracción?
- e) ¿En qué consiste el poder de resolución de una red de difracción
- f) ¿Qué son los planos de Bragg?
- g) diseñe un problema sencillo con la ley de Bragg y resuélvalo

ACTIVIDAD 37

Investigue y conteste:

- h) ¿Qué es la polarización?
- i) Escriba 3 aplicaciones de la polarización
- j) ¿Cuáles son los tipos de polarización?
- k) ¿En qué consiste la actividad óptica?
- I) Escriba dos aplicaciones de la actividad óptica

ACTIVIDAD 38

Investigue y conteste:

a) ¿Bajo qué circunstancias podemos decir que se tiene un haz LASER?

- b) ¿Qué diferencia hay entre un LASER y un MASER?
- c) ¿Con qué material se construyó el primer LASER y quien lo hizo?
- d) ¿Qué significan las siglas L.A.S.E.R.?
- e) ¿Cuáles son los diferentes tipos de LASER?
- f) ¿Cómo se clasifican los LASER?
- g) Enuncie tres aplicaciones de los LASER

Investigue y conteste:

- a) ¿A qué se refiere la Ley de Plank?
- b) ¿Bajo qué circunstancias puede un cuerpo emitir radiación térmica?
- c) Escriba el valor de la constante de Plank
- d) Escriba la expresión matemática para la energía de un fotón de frecuencia v
- e) Escriba la expresión matemática de la Ley de Plank
- f) Escriba el valor de la constante de Boltzmann

ACTIVIDAD 40

Investigue y conteste:

- a) ¿En que consiste el efecto fotoeléctrico?
- b) ¿Quién, y en que año, descubrió el efecto fotoeléctrico?
- c) ¿Enuncie 3 aplicaciones tecnológicas del efecto fotoeléctrico?
- d) ¿Qué es una celda fotovoltaica?
- e) ¿Qué tipo de material se utiliza para fabricar una celda fotovoltaica?
- f) Investigue y conteste cual es la máxima eficiencia actual para una celda fotovoltaica