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Credits

P These slides are completely based on the book of Sutton and Barto
[1], chapter 6.

> Any difference with this source is my responsibility.
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Introduction

Novelty

> If one had to identify one idea as central and novel to RL, it would be
undoubtedly be temporal difference (TD).

» TD is a combination of Monte Carlo (MC) and Dynamic
Programming (DP) ideas.

» Indeed these methods can be combined in many ways.

P
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Introduction

Compared with MC

» TD methods can also learn directly from raw experience without a
model of the environment’s dynamics.

b

Universidad Veracruzana

Dr. Alejandro Guerra-Hernandez (UV) Agent-Based Modeling and Simulation ABMS 2019 4/38



Introduction

Compared with DP

> TD methods updates estimates based in part on other learned
estimates, without waiting for a final outcome (bootstrapping).

b
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TD Prediction Learning from Experience

Constant-a« MC

> Given some experience following the policy w, TD and MC update
their estimates V of v, for the nonterminal states S; occurring in
that experience.

» MC methods wait until the return following the visit is known, then
use the return as a target for V/(s;).

> A simple every-visit MC method suitable for nonstationary
environments is:

V(S) < V(S + a[ct - V(St)] (1)
where G; is the actual return following time t. ‘
» Lets call this method constant-ae MC. M
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TD Prediction Learning from Experience

» Where as MC must wait until the end of the episode to determine the
increment to V/(s; (only then G; is known), TD methods need to wait
only until next time step.

> At time t 4+ 1 they immediately form a target and make a useful
update using the observed reward R;y; and the estimate V/(S¢11):

V(S:) < V(St) + a|Resa +1V(Ses1) — V(St)] 2)

P
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TD Prediction Learning from Experience

Tabular TD(0) for estimating v,

Require: 7w > the policy to be evaluated
Require: a € (0,1] > step size
Ensure: V(s) Vs € 8" > arbitrarily, except that V/(terminal) =0

1: loop for each episode

2: init(S)

3 loop for each step in the episode

4 A < the action recommended by 7 for S.

5 R, S’ « execute(A)

6: V(S) « V(S)+a|R+~V(S)— V(S)

7 S« 9

8: end loop ‘
9: end loop M
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TD Prediction Learning from Experience

Estimate

» While MC uses an estimate, sampling values of:
Ve = Ex[Gt | St = 5] (3)
» DP estimates instead:
Ve = Ex[Rer1 + yva(Se1) | St = 5] (4)

by adopting the known V/(S;1) instead of v (S¢41).
» TD(0) is a combination of MC sampling with DP bootstrapping.
» Remember both equations are equivalent. ‘
V]
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TD Prediction Learning from Experience

Backup Diagram

» The value estimate for the state node at the
top is updated on the basis of the one
sample transition from it to the immediate
following state.

» TD and MC involves looking ahead to a
sample successor state, instead of a complete
distribution of all possible successors. TD(0)

P
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TD Prediction Learning from Experience

TD error

>

Observe that the difference between the estimated value of S; and the
better estimate Ry+1 + vV/(S¢+1) is a sort of error, called the TD
error:

0t = Rey1 +7V(Se41) — V(St) (5)

Notice that d; is the error in the estimate made at that time, but
requires information available one step later.

If V does not change during the episode, as in MC methods, then:

T-1
Gerr — V(Se) = Y 7" "ok (6)
k=t
If this is not the case, as in TD(0), small o values hold (h
this identity approximately. M
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Advantages of TD Prediction Methods

Bootstrapping

» TD methods update their estimates based in part on other estimates.
They learn guess from a guess —they bootstrap.

» What advantages do TD methods over MC and DP?

b
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Advantages of TD Prediction Methods

Advantages

» TD methods do not require a model of the environment, of its reward
and next-state probability distributions; as DP methods do.

» TD methods are naturally implemented in an online, fully incremental
fashion. They don’t have to wait until the end of the episode to learn,
as MC.

» Surprisingly often, this turns out to be a critical consideration. e.g.,
when facing very long episodes or continuous tasks.

> TD methods learn from each transition regardless of what subsequent
actions are taken, they are faster than some MC methods that ignore

exploring actions. '
W
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Advantages of TD Prediction Methods

Soundness

» Certainly it is convenient to learn one guess from the next, without
waiting for an actual outcome, but can we still guarantee convergence
to the correct answer?

» Yes. For any fixed policy m, TD(0) has been proved to converge to
Vi, in the mean for a constant step-size parameter if it is sufficiently
small, and with probability 1 if o decreases accordingly to the usual
approximation conditions.

> Most convergence proofs apply only to the table-based case, but some
also apply to the general linear function approximation.

(]
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Advantages of TD Prediction Methods

» If both TD and MC methods converge asymptotically to the correct
predictions, the which gets there first?

> At the current time this is an open question in the sense that no one
has been able to prove mathematically that one method converges
faster than the other.

P In fact, it is not even clear what is the most appropriate formal way to
phrase this question.

» In practice TD methods have usually been found to converge faster
than constant-ac MC methods on stochastic tasks.
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Advantages of TD Prediction Methods

Example: Random Walk

» Consider the following Markov Reward Process (an MDP without
actions):

0 0 0 0 0 1
== (—)—)
start
> All episodes start at C, then proceed either left or right by one state
on each step, with equal probability.
» Example. C,0,B,0,C,0,D,0,E 1

» The true value of each state is the probability of terminating on the
right if starting at that state, e.g., v,(C) = 0.5

» True value from A to E are %, %, %, %, and g @
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Advantages of TD Prediction Methods

Values Learned bt TD(0), a = 0.1
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Advantages of TD Prediction Methods

Empirical RMS error
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Optimality of TD(0)

Batch Updating

» Suppose there is available only a finite amount of experience, say 10
episodes or 100 time steps.

> A common approach with incremental learning is to present the
experience repeatedly until the method converges upon an answer.

» Given an approximate value function V/, the increments specified in
eq. 1 and 2 are computed for every time step t at which a
nonterminal state is visited, but the value function is changed only
once, by the sum of all the increments.

> Then all the available experience is processed again with the new

value function to produce a new overall increment, an so on,
until the value function converges.

P
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Optimality of TD(0)

Convergence

» Under batch updating, TD(0) converges deterministically to a single
answer independent of the step-size parameter, as long as « is chosen
to be sufficiently small.

» constant-a MC method also converges deterministically under the
same conditions, but to a different answer.

P
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Optimality of TD(0)

Example: Random Walk under Batch Updating

> After each new episode, all episodes seen so far were treated as a
batch —they were repeatedly presented to the algorithm with an «
sufficiently small to converge.

257

BATCH TRAINING
2

RMS error, .15
averaged
over states .1+

.05 ™

-0 T T T 1
0 25 50 75 100

Walks / Episodes

» MC is optimal only in a limited way, TD is optimal in a way @
that is more relevant to predict returns.

/
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Optimality of TD(0)

Example: You are the Predictor

> Suppose you observe the following eight episodes:

A0BO0 Bl
B,1 B,1
B,1 B,1
B,1 B.0

» Given this batch data, what would you say are the optimal
predictions, the best values for estimates V/(A) and V/(B)?

» Everybody would agree that the optimal value for V(B) is % because
six out of eight times in the state B the process terminated

immediately with return 1.
> What about A? q&?
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Optimality of TD(0)

Answer 1

» Observe that 100% of the times the process was in state A it
traverses immediately to B (with a reward of 0); and

» Because we have already decided that B has value %, therefore A
must have value % as well.

» Modelling the MDP enables the computation of this value. This is
the answer that batch TD(0) also gives.
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Optimality of TD(0)

Answer 2

> We have seen A only once and the return that followed was 0;
therefore V(A) = 0.

This is the answer that batch MC methods give.

\4

P> Notice that it is also the answer that gives minimum square error on
the trining data.

> If the process is Markov, we expect that answer 1 will produce lower
error on future data; while answer 2 is better on existing data.

Universidad Veracruzana

Dr. Alejandro Guerra-Hernandez (UV) Agent-Based Modeling and Simulation ABMS 2019 24 /38



Optimality of TD(0)

Maximum Likelihood Estimate

» Batch MC methods always find the estimate that minimize the
mean-squared error on the training set, whereas batch TD(0) always
find the estimate that would be exactly correct for the maximum
likelihood model of the Markov process.

» The maximum likelihood estimate of a parameter is the parameter
value whose probability of generating the data is greatest.

» Given the model we can compute the estimate of the value function
that would be exactly correct if the model were exactly correct.

P> This is called the certainty-equivalence estimate. In general, batch

TD(0) converges to it. (h
\/
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Optimality of TD(0)

Certainty-Equivalence

» Although the certainty-equivalence estimate is in some sense an
optimal solution, it is almost never feasible to compute it directly.

» If n =8| is the number of states, then just forming the
maximum-likelihood estimate may require the order of n> memory,
and computing the corresponding function requires on the order of n?
steps.

P It is striking that TD methods can approximate the same solution
with no more than order n repeated computations over the training
set.

» On tasks with large state spaces, TD methods may be the only
feasible way of approximating this solution.

Y
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Sarsa: On-policy TD Control

Action-value Function

» The first step is to learn an action-value function rather than a
state-value function.

» In particular, for an on-policy method we must estimate q,(s, a) for
the current behavior policy 7 and for all states s and actions a.

» This can be donde using essentially the same TD method described
above for learning v;.

» Recall that an episode consists of an alternating sequence of states
and state-action pairs:

. @ Rts1 /Sm\ Ris2 @ Rus @_‘_
At U Aty U A2 Aug
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Sarsa: On-policy TD Control

Transitions |

» In the previous section we consider transitions from state to state and
learned the values of states.

> Now we consider transitions from state-action pair to state-action
pair, and learn the value of state-action-pairs.

» Formally these cases are identical: they are both Markov chains with
a reward process.

» The theorems assuring convergence of state values under TD(0) also
apply to the corresponding algorithm for action values:

QS Ar) — Q(Se, A+ 0| Rev +7Q(Ser1, Aest) — Q(st,At)} (7)

» This update is done after every transition from a nonterminal (h
state S;. M

» If S;y1 is terminal, then Q(Sty1, Ary1 is defined as zero.
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Sarsa: On-policy TD Control

Transitions |l

» This rule uses every element of the quintuple of events,
(St; Aty Rev1, Stv1, Arra).
» Backup diagram:

Sarsa

b
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Sarsa: On-policy TD Control

Sarsa (on-policy TD control) for estimating Q =~ g.

Require: « € (0, 1] > the step size
Require: Small ¢ > 0 > probability of exploration
1: Initialize Q(s,a) Vs € 8, a € A, arbitrarily except that
Q(terminal,.) = 0.
2: loop for each episode

3 Initialize S

4: loop for each step of the episode

5 Take action A, observe R, S’

6 Choose A’ from S’ using policy derived from Q (e.g., e-greedy).
rQSA) < QS.A)+a|R+4Q(SA) - Q(S.A)

8: S+ S A A

0: end loop until $ in terminal (h
10: end loop \/]
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Q-learning: Off-policy TD Control

Q-Learning

» One of the early breakthroughs in RL, defined by Watkins and Dayan
[2] as:

Q(St, Ar) < Q(St, Ar) + | Rer1y max Q(St+1) — Q(St, Ar)|  (8)

» The learned action-value function @, directly approximates g., the
optimal action-value function, independent of the policy followed.

» All what is required for correct convergence is that all pairs continue
to be updated.

» Observe this is a minimal requirement, i.e., any method that
guarantees to find optimal behavior requires it. *
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Q-learning: Off-policy TD Control

Backup Diagram

» What does the backup diagram of Q-learning look like?

Q-learning

b
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Expected Sarsa

Expected Sarsa

» Consider an algorithm that is just like Q-learning, except that instead
of the maximum over next state-action pairs it uses the expected
value, taking into account how likely each action is under current

policy:

Q(Se, Ar) — Q(Se, Ae) + a [Rm AV Q(Str1s Arst) | See] — Q(Se, At)]
(9)
QS A) +a|Ria +7 Y m(a] Sii1)QSei,2) — QS A

a

» Given S;1 it moves deterministically in the same direction that Sarsa

moves in expectation. ‘
\/
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Backup Diagram

Expected Sarsa

Expected Sarsa
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Expected Sarsa

Advantages

» Expected Sarsa is more complex computationally than Sarsa, but in
return, it eliminates the variance due to the random selection of A;y1.

» Given the same amount of experience we might expect it to perform
slightly better than Sarsa, and indeed it generally does.

P
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Games, Afterstates, and Other Special Cases

Afterstates

» Our general approach involves learning an action-value function.

> But, in session 9 we introduced a TD method for learning to play
tic-tac-toe based on something closer to a state-value function.

> However, conventional state-value functions evaluates states in which
the agent has the option of selecting an action; while the tic-tac-toe
evaluates board positions after the agent has made its move.

> Afterstates are useful when we have knowledge of an initial part of
the environment's dynamics but not necessarily the full dynamics.

P
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Games, Afterstates, and Other Special Cases

Behind Efficiency

» Many position-move pairs produce the same resulting position:
X X

b
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