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Credits

I These slides are completely based on the book of Sutton and Barto
[1], chapter 3.

I Any difference with this source is my responsibility.
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Introduction Markov Decision Processes

MDPs

I They characterize the problem we try to solve in the following
sessions.

I They involved evaluative feedback and an associative aspect
–choosing different actions in different situations.

I They are a classical formalization of sequential decision making,
where actions influenced not just immediate rewards, but also
subsequent situations, or states, and through those future rewards.
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The Agent-Environment Interface Notation

Interaction

I A frame for the problem of learning from interaction to achieve a goal:

Agent

Environment

action 
At

reward 
Rt

state 
St

Rt+1
St+1

I There is a sequence of discrete time steps, t = 0, 1, 2, 3, . . .
I At each t the agent receives some representation of the environment’s

state, St ∈ S, and on that basis selects an action, At ∈ A(s).
I As a consequence of its action, the agent receives a numerical

reward, Rt+1 ∈ R ⊂ R.
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The Agent-Environment Interface Notation

Trajectories

I The MDP and agent together thereby give rise to a sequence or
trajectory that begins like this:

S0,A0,R1,S1,A1,R2,S2,A2,R3, . . . (1)
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The Agent-Environment Interface Notation

Finite MDPs

I The sets of states (S), actions (A), and rewards (R) are finite.
I The random variables Rt and St have well defined discrete probability

distributions dependent only on the preceding state and action.
I For s ′ ∈ S and r ∈ R there is a probability of occurrence of those

values at time t, given by:

p(s ′, r | s, a) .= Pr{St = s ′,Rt = r | St−1 = s,At−1 = a} (2)

for all s ′, s ∈ S, r ∈ R, and a ∈ A(s).
I The function p defines the dynamics of the MDP.
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The Agent-Environment Interface Notation

Constrain on p

I Since p specifies a probability distribution for each choice of s and a,
then: ∑

s′∈S

∑
r∈R

p(s ′, r | s, a) = 1 (3)

for all s ∈ S and a ∈ A(s).
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The Agent-Environment Interface Notation

The Markov Property

I In a MDP, the probabilities given by p : S× R× S×A→ [0, 1]
completely characterize the environment’s dynamics.

I This is best viewed as a restriction not on the decision process, but on
the state.

I The state must include information about all aspects of the past
agent-environment interaction that make a difference in the future.

I If it does, it is said to have the Markov property.
I The property is assumed in what follows.
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The Agent-Environment Interface Other computations

State-transition Probabilities

p(s ′ | s, a) .= Pr{St = s ′ | St−1 = s,At−1 = a}
=
∑
r∈R

p(s ′, r | s, a). (4)
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The Agent-Environment Interface Other computations

Expected Rewards

r(s, a) .= E
[
Rt | St−1 = s,At−1 = a

]
=
∑
r∈R

r
∑
s′∈S

p(s ′, r | s, a). (5)

r(s, a, s ′) .= E
[
Rt | St−1 = s,At−1 = a, St = s ′

]
=
∑
r∈R

r p(s ′, r | s, a)
p(s ′ | s, a) .

(6)
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The Agent-Environment Interface Observations

Flexibility

I Time steps need not refer to fixed intervals, but arbitrary successive
stages of decision making and acting.

I Actions can be low-level controls, as the voltages applied to motors in
a robot arm; or high-level decisions, e.g., whether or not to have a
lunch.

I States can be completely determined by low-level sensations, e.g.,
senso readings; or be more high-level, e.g., symbolic descriptions à la
BDI.

I Actions can be mental, i.e., internal; or external in the sense they
affect the environment.
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The Agent-Environment Interface Observations

Boundaries

I The boundary between agent and environment is typically not the
same as the physical boundary of a robot’s or animal’s body.

I Example: The motors and mechanical linkages of a robot and its
sensing hardware should be considered part of the environment rather
than part of the agent.

I Rewards too are considered as external to the agent.
I The boundary represents the limit of the agent’s absolute control, not

of its knowledge.
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The Agent-Environment Interface Observations

Efficiency

I The MDP framework is a considerable abstraction of the problem of
goal-directed learning from interaction.

I Any problem is reduced to three signals:
I The choices made by te agent (actions).
I The basis on which choices are made (states).
I THe agent’s goal (rewards).

I Particular states and actions vary greatly from task to task, and how
they are represented can strongly affect performance.

I Representational choices are at present more art than science.
I Advices will be offered, but our primary focus is on

general principles.
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The Agent-Environment Interface Examples

Bioreactor

I The actions might target temperatures and stirring rates passed to
lower-level control systems, linked to heating elements and motors to
attain the targets.

I The states are likely to be thermocouple and other sensory readings,
perhaps filtered and delayed, plus symbolic inputs representing the
ingredients in the vat and the target chemical.

I The rewards might be moment-to-moment measures of the rate at
which the useful chemical is produced by the bioreactor.

I Observe: States and actions are vectors, while rewards are
single numbers. This is typical of RL.
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The Agent-Environment Interface Examples

Pick-and-Place Robot

I To learn movements that are fast and smooth, the learning agent will
have to control the motors directly and have low-latency information
about the current positions and velocities of the mechanical linkages.

I Actions might be voltages applied to each motor at each joint.
I States might be the latest readings of joint angles and velocities.
I The reward might be +1 for each object successfully picked and

placed.
I To encourage smooth movements, a small negative reward can be

given as a function of the moment-to-moment “jerkiness”
of the motion.
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The Agent-Environment Interface Examples

Recycling Robot I

I A mobile robot has the job of collecting empty soda cans in the office
environment.

I It has sensors for detecting cans, and an arm and a gripper that can
pick them up and place them in an onboard bin.

I It runs on a rechargeable battery.
I The robot’s control system has components for interpreting sensory

information, for navigating, and for controlling the arm and gripper.
I High-level decisions about how to search for cans are made by a RL

agent based on the current charge level of the battery.
I Assume that only two charge levels can be distinguished,

comprising a small state set S = {high, low}.
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The Agent-Environment Interface Examples

Recycling Robot II

I In each state, the agent can decide whether to:
1. Actively search for a can for a certain period of time;
2. Remain stationary and wait for someone to bring it a can; or
3. Head back to its home base to recharge its battery.

I When the enerly level is high, recharging will always be foolish, so it is
not included in the action set for such state. The action sets are:
I A(high) = {search,wait};
I A(low) = {search,wait, recharge}.

I The rewards are zero most of the time, but become positive when the
robot secures an empty can, or large and negative if the battery
runs all the way down.
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The Agent-Environment Interface Examples

Recycling Robot III

I The best way to find cans is to actively search for them, but this runs
down the robot’s battery, whereas waiting does not.

I Whenever the robot is searching, the possibility exists that its battery
will become depleted. In this case the robot must shut down and wait
to be rescued (producing a low reward).

I If the energy level is high, then a period of active search can always
be completed without risk of depleting the battery.

I A period of searching that begins with a high energy level leaves the
energy level high with probability α and reduces it to low with
probability 1− α.

I On the other hand, starting when the energy level is low
leaves it low with probability β and depletes the battery with
probability 1− β.
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The Agent-Environment Interface Examples

Recycling Robot IV

I In the latter case, the robot must be rescued, and the battery is then
recharged back to high.

I Each can collected by the robot counts as a unit reward, whereas a
reward of -3 results whenever the robot has to be rescued.

I Let rsearch and rwait with rsearch > rwait , respectively denote the
expected number of cans the robot will collect (expected reward).

I Finally, suppose that no cans can be collected during a run home for
charging, neither on a step in which the battery is depleted.
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The Agent-Environment Interface Examples

The finite MDP as a table

s a s ′ p(s ′ | s, a) r(s, a, s ′)
high search high α rsearch

high search low 1− α rsearch

low search high 1− β -3
low search low β rsearch

high wait high 1 rwait

high wait low 0 -
low wait high 0 -
low wait low 1 rwait

low recharge high 1 0
low recharge low 0 -
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The Agent-Environment Interface Examples

The finite MDP as a Transition Graph

lowhigh
recharge

search

wait

wait

search

1, rwait

1, rwaitα, rsearch 1-α, rsearch

β, rsearch1-β, -3

1,0
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Goals and Rewards Reward

Reward

I The purpose or goal of the agent is formalized in terms of a special
signal, called reward, passing from the environment to the agent.

I At each time step, the reward is a simple number, Rt ∈ R.
I Informally, the agent’s goal is to maximize the total amount of

received reward.
I The reward hypothesis:

That all of what we mean by goals and purposes can be well
thought of as the maximization of the expected value of the cu-
mulative sum of a received scalar signal, called reward.

I The use of a reward signal to formalize the idea of a goal
is one of the most distinctive features of RL.
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Goals and Rewards Reward

Examples

I Although formulating goals in terms of reward signals might appear
limiting, it has proved to be flexible and widely applicable:
I To make a robot learn to walk, researchers have provided reward on

each time step proportional to the robot’s forward motion.
I In making a robot learn to escape from a maze, the reward is often -1

for every time step that passes prior to escape; encouraging the fastest
possible escape.

I To make a robot learn to find and collect empty soda cans for recycling,
one might give a reward of zero most of the time, and the +1 for each
can collected. Bumping into things might get negative reward.

I An agent learning chess or checkers receive +1 as reward when
winning, -1 for losing, and 0 otherwise.
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Goals and Rewards Reward

Considerations

I The agent always learn to maximize its reward. If we want it to do
something for us, we must provide rewards to it in such a way that
maximizing them achieve our goals.

I The reward signal is not the place to impart the agent prior
knowledge about how to achieve what we want it to do.

I Example: A chess playing agent must be rewarded only for actually
winning, not for achieving subgoals as taking its opponent’s pieces or
gaining control of the center of the board.

I The reward signal is your way of communicating to the robot what
you want it to achieve, not how you want it achieved.
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Goals and Rewards Returns and Episodes

Expected Return

I If the sequence of rewards received after time step t is denoted
Rt+1,Rt+2,Rt+2, . . . , then what precise aspect of this sequence do
we wish to maximize?

I In general we seek at the expected return, where the return, denoted
Gt , is defined as some specific function of the reward sequence, e.g.,
the sum of rewards:

Gt
.= Rt+1 + Rt+2 + Rt+3 + · · ·+ RT (7)

where T is a final time step.
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Goals and Rewards Returns and Episodes

Episodic Tasks

I This makes sense when the agent-environment interaction breaks
naturally into episodes, where a terminal state is reached at the end.

I After that, the system is reset to standard starting state or to a
sample from a standard distribution of starting states.

I Tasks with episods of this kind are called episodic tasks.
I In episodic tasks we need to distinguish the set of all non terminal

states, denoted by S, from the set of all states plus the terminal state
S+

I The time of termination T is a random variable that normally varies
from episode to episode.
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Goals and Rewards Returns and Episodes

Continuing Tasks

I Where tasks go continually without limit.
I Examples: An on-going process control task; or an application to a

robot with a long life span.
I The return formulated in Eq. 7 is problematic since T =∞, and the

return itself easily become infinite too.
I We need a definition of return that is slightly more complex

conceptually, but much simpler mathematically.
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Goals and Rewards Returns and Episodes

Discounted return

I The additional concept that we need is that of discounting.
I The agent tries to select actions so that the sum of the discounted

rewards it receives over the future is maximized.
I It chooses At to maximize the expected discounted return:

Gt
.= Rt+1 + γRt+2 + γ2Rt+3,+ . . .

=
∞∑

k=0
γkRt+k+1

(8)

where 0 ≤ γ ≤ 1 is the discount rate.
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Goals and Rewards Returns and Episodes

Observations

I The discount rate determines the present value of future rewards: a
reward received k steps in the future is worth only γk−1 times what it
would be worth if it were received immediately.

I if γ < 1 in Eq. 8, the infinite sum has a finite value as long as the
reward sequence Rk is bounded.

I If γ = 0, then the agent is myopic in being concerned only with
maximizing immediate rewards: Choosing At in order to maximize
Rt+1.

I As γ approaches 1, the return objective takes future rewards into
account more strongly, the agent becomes more farsighted.
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Goals and Rewards Returns and Episodes

Relation over Returns

I Returns at succesive time steps are related to each other in a way
that is important for the theory, and algorithms of RL:

Gt
.= Rt+1 + γRt+2 + γ2Rt+3,+γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . . )
= Rt+1 + γGt+1

(9)

I Note that this works for all time steps t < T , even if termination
occurs at t + 1, if we define GT = 0.
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Goals and Rewards Returns and Episodes

Finite Reward

I Observe that although the return in Eq. 8 is a sum of an infinte
number of terms, it is still finite if the reward is nonzero and constant
–if γ < 1.

I Example. If the reward is a constant +1, then the return is:

Gt =
∞∑

k=0
γk = 1

1− γ (10)
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Unified Notation for Episodic and Continuing Tasks Episodic Notation

Episodic Notation

I Episodic tasks require some additional notation. Rather than one long
sequence of time steps, we need to consider series of episodes, each
which consists of a finite sequence of time steps.

I We number the time steps of each episode starting anew from zero.
I We need to represent the time step t at episode i , St,i for the state,

and similarly for At,i ,Rt,i , πt,i ,Ti , etc.
I However, it turns out that when we discuss episodic tasks, we almost

never have to distinguish between different episodes. Abuse of
notation St refers to St,i .
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Unified Notation for Episodic and Continuing Tasks Episodic Notation

Absorbing States

I We have defined the return as a sum over a finite number of terms
(Eq. 7 and as a sum over infinite number of terms (Eq. 8).

I Both can be unified by considering episode termination to be the
entering of a special absorbing state that transitions only to itself and
generates always rewards of zero:

S0 S1 S2
R4 = 0
R5 = 0

.

.

.

R1 = +1 R2 = +1 R3 = +1
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Unified Notation for Episodic and Continuing Tasks Episodic Notation

Alternative Notation

I We can write:

GT
.=

T∑
k=t+1

γk−t−1Rk (11)

including the possibility that T =∞ or γ = 1, but no both.
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Policies and Value Functions Policies

Ideas

I Almost all RL algorithms involve estimating value functions
–functions of states (or of state-action pairs) that estimate how good
is it for the agent to be there.

I The notion of how good is defined in terms of future rewards that can
be expected, or, to be precise, in terms of expected return.

I The rewards the agent can expect to receive in the future depend ot
what actions it will take.

I Accordingly, value functions are defined with respect to particular
ways of acting, called policies.
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Policies and Value Functions Policies

Policy

I A policy is a mapping from states to probabilities of selecting each
possible action.

I If the agent is following the policy π at time t, then π(a | s) is the
probability that At = a if St = s.

I Like p, π is an ordinary function; the bar in the middle merely reminds
that it defines a probability distribution over a ∈ A(s) for each s ∈ S.
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Policies and Value Functions Policies

Value function

I The value function of a state s under a policy π, denoted vπ(s), is the
expected return when starting at s and following π thereafter:

vπ(s) .= Eπ [Gt | St = s]

= Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s
]

(12)

for all s ∈ S.
I Eπ[·] denotes the expected value of a random variable, given that the

agent follows π; and t is time step.
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Policies and Value Functions Policies

Value of Taking an Action

I Similarly, the value of taking an action a in a state s under a policy π
is denoted as:

qπ(s, a) .= Eπ [Gt | St = s,At = a]

= Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a
]

(13)

I qπ is called the action-value function for policy π.
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Policies and Value Functions Policies

Experience

I The value functions vπ and qπ can be estimated from experience.
I Example. If an agent follows policy π and maintains an average, for

each state encountered, of the actual returns that have followed that
state, then the average will converge to the state’s value vπ(s), as the
number of times that state is encountered approaches infinity.

I If separate averages are kept for each action taken in each state, then
these averages will converge to action values qπ(s, a).

I Estimation methods of this kind are called Monte Carlo methods
because they involve averaging over many random samples of actual
returns.
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Policies and Value Functions The Bellman Equation

The Bellman Equation

I For any policy π and any state s, the following consistency condition
holds between the value of s and the value of its possible successor
states (Similar to Eq. 9):

vπ(s) .= Eπ [Gt | St = s]
= Eπ [Rt+1 + γGt+1 | St = s]
=
∑

a
π(a | s)

∑
s′

∑
r

p(s ′, r | s, a)
[
r + γEπ

[
Gt+1 | St+1 = s ′

]]
=
∑

a
π(a | s)

∑
s′,r

p(s ′, r | s, a)
[
r + γvπ(s ′)

]
(14)

for all s ∈ S.
I Observe the merged sum over all values of s ′ and r .
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Policies and Value Functions The Bellman Equation

Backup Diagram for vπ

I Open circles represent states.
I Black circles represent a state-action

pair.
I Staring at s the agent could take any

of some set of actions, based on π.
I For each, the environment could

respond with one of several next
states s ′, along with a reward r ,
depending on its dynamics given by
the function p.

s

π

a

s’

r
p
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Policies and Value Functions The Bellman Equation

Observations

I The Bellman equation averages over all the possibilities, weighting
each by its probability of occurring.

I It states that the value of the start state must equal the (discounted)
value of the expected next state, plus the reward expected along the
way.

I The value function vπ is the unique solution to its Bellman equation.
I Backup diagrams represent backup operations that transfer value

information back to a state (or a pair state-action) from its successor
states.
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Policies and Value Functions The Bellman Equation

Example: Gridworld
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Optimal Policies and Value Functions Optimal Policies

Optimal Policies

I Solving an RL task means, roughly, finding a policy that achieves a
lot of reward over the long run.

I For finite MDPs we can precisely define it:
I Value functions define a partial ordering over policies.
I π ≥ π′ iff vπ(s) ≥ vπ′(s), for all sinS.

I There is always at least one policy that is better than or equal to all
other policies –an optimal policy.

I Although there may be more than one, we denote all the optimal
policies by π∗.
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Optimal Policies and Value Functions Optimal Policies

Optimal State-Value Functions

I Optimal policies share the same state-value function, denoted v∗:

v∗
.= max

π
vπ(s) (15)

for all s ∈ S.
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Optimal Policies and Value Functions Optimal Policies

Optimal Action-Value Function

I Optimal policies also share the same optimal action-value function,
denoted as q∗:

q∗(s, a) .= max
π

qπ(s, a) (16)

for all s ∈ S and a ∈ A.
I For the state-action pair (s, a), this function gives the expected return

for taking action a in state s and thereafter following an optimal
policy. Thus we can write q∗ in terms of v∗:

q∗(s, a) = E[Rt+1 + γv∗(St+1 | St = s,At = a] (17)
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Optimal Policies and Value Functions Optimal Policies

Belleman Optimality Equation I

I Because v∗ is the value function for a policy, it must satisfy the
self-consistency condition given by the Bellman equation for state
values (Eq. 14).

I Because it is the optimal value function, however, v∗’s consistency
condition can be written without reference to any specific policy.

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

E[Rt+1 + γv∗(St+1 | St = s,At = a]

= max
a

∑
s′,r

p(s ′, r | s, a)[r + γv∗(s ′)]

(18)
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Optimal Policies and Value Functions Optimal Policies

Belleman Optimality Equation II

I The Bellman optimality equation for q∗ is:

q∗(s, a) = E
[
Rt+1 + γmax

a′
(St+1, a′) | St = s,At = a

]
=
∑
s′,r

p(s ′, r | s, a)
[
r + γmax

a′
q∗(s ′, a′)

] (19)
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Backup Diagrams
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Solution

I For finite MDPs, the Bellman optimality equation for vπ has a unique
solution independent of the policy.

I This equation is actually a sustem of equations, one for each states
–If there are n states, then there are n equations in n unknowns.

I If the dynamics p of the system are known, then in principle the
system can be solve for v∗.

I The same for q∗.
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Getting the Optimal Policy

I Once we have v∗ is relatively easy to determina an optimal policy.
I For each state s, there will be one or more actions at which the

maximum is obtained in the Bellman optimality equation.
I Any policy that assigns nonzero probability only to those actions is an

optimal policy.
I You can think of this as a one-step search.
I Any policy that is greedy with respect to the optimal evaluation

function v∗ is an optimal policy.
I Observe that v∗ already takes into account the reward consequences

of all possible future behavior!
I The one-step search yields the long-term optimal actions.
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Based on q∗

I Having q∗ makes choosing optimal actions even easier. With q∗ the
agent does not even have to do a one-step-ahead search!

I For any state s, it can simply find any action that maximizes q∗(s, a).
I At the cost of representing a function of state-action pairs, instead of

just states, we allow optimal actions to be selected without having to
know anything about the environment’s dynamic!
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Graphically: Gridworld
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Mathematically: The Recycling Robot

3.6. Optimal Policies and Optimal Value Functions 65

representing a function of state–action pairs, instead of just of states, the optimal action-
value function allows optimal actions to be selected without having to know anything
about possible successor states and their values, that is, without having to know anything
about the environment’s dynamics.

Example 3.8: Solving the Gridworld Suppose we solve the Bellman equation for v⇤
for the simple grid task introduced in Example 3.5 and shown again in Figure 3.5 (left).
Recall that state A is followed by a reward of +10 and transition to state A0, while state
B is followed by a reward of +5 and transition to state B0. Figure 3.5 (middle) shows the
optimal value function, and Figure 3.5 (right) shows the corresponding optimal policies.
Where there are multiple arrows in a cell, all of the corresponding actions are optimal.

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5
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v* π*Gridworld v⇤ ⇡⇤
Figure 3.5: Optimal solutions to the gridworld example.

Example 3.9: Bellman Optimality Equations for the Recycling Robot Using
(3.19), we can explicitly give the Bellman optimality equation for the recycling robot
example. To make things more compact, we abbreviate the states high and low, and the
actions search, wait, and recharge respectively by h, l, s, w, and re. Because there are
only two states, the Bellman optimality equation consists of two equations. The equation
for v⇤(h) can be written as follows:

v⇤(h) = max

⇢
p(h |h, s)[r(h, s, h) + �v⇤(h)] + p(l |h, s)[r(h, s, l) + �v⇤(l)],
p(h |h, w)[r(h, w, h) + �v⇤(h)] + p(l |h, w)[r(h, w, l) + �v⇤(l)]

�

= max

⇢
↵[rs + �v⇤(h)] + (1� ↵)[rs + �v⇤(l)],
1[rw + �v⇤(h)] + 0[rw + �v⇤(l)]

�

= max

⇢
rs + �[↵v⇤(h) + (1� ↵)v⇤(l)],
rw + �v⇤(h)

�
.

Following the same procedure for v⇤(l) yields the equation

v⇤(l) = max

8
<
:

�rs � 3(1� �) + �[(1� �)v⇤(h) + �v⇤(l)],
rw + �v⇤(l),
�v⇤(h)

9
=
; .

For any choice of rs, rw, ↵, �, and �, with 0  � < 1, 0  ↵,�  1, there is exactly
one pair of numbers, v⇤(h) and v⇤(l), that simultaneously satisfy these two nonlinear
equations.
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Problems

I Explicitly solving the Bellman optimality equation solves the RL, but
it is rarely directly useful.

I It is akin to an exhaustive search, looking ahead at all possibilities,
computing their desirabilities in terms of expected rewards.

I This solution relies in three assumptions:
1. We accurately know the dynamics of the environment;
2. We have enough computational resources to complete the

computational solution; and
3. The Markov property.
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Cost

I We have defined optimal value functions and optimal policies.
I An agent that learns an optimal policy has done it very well, but in

practice this rarely happens.
I Optimal policies can be generated only with extreme computational

cost.
I Optimality is an ideal that agents can only approximate to varying

degrees.
I Memory is also an issue.
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Approximation

I In approximating optimal behavior, there may be many states that the
agent faces with such low probability that selecting suboptimal
actions for them has little impact in the received reward.

I The online nature of RL makes it possible to approximate optimal
policies in ways to put more effort into learning to make good
decisions for frequently encountered states, at the expense of the rest
of them.
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