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Credits

I These slides are completely based on the book of Sutton and Barto
[1], chapter 1.

I Any difference with this source is my responsibility.
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Introduction

Introduction

I Learning by interacting with our environment is probably the first to
occur to us about the nature of learning.

I This is based on sensorimotor connection to the environment that
provides information about cause and effect, e.g., the consequences of
actions and what to do in order to achieve goals.

I A major source of knowledge about our environment and ourselves.
I We will explore a computational approach to learning from

interaction.
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Reinforcement Learning

Definition

I Reinforcement learning is learning what to do –how to map situations
to actions– so as to maximize a numerical reward signal.

I The learner is not told which actions to take, but instead must
discover which actions yield the most reward by trying them.

I In the most interesting and challenging cases, actions may affect not
only the immediate reward but also the next situation and, through
that, all subsequent rewards.

I These two characteristics –trial-and-error search and delayed reward–
are the two most important distinguishing features of reinforcement
learning.
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Reinforcement Learning

Duality

I RL is simultaneously a problem, a class of solution methods that work
well on the problem, and the field that studies this problem and its
solution methods.

I The distinction between problems and solution methods is very
important in reinforcement learning; failing to make this distinction is
the source of many confusions.
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Reinforcement Learning

Formalization

I Using ideas from dynamical systems theory, specifically, as the
optimal control of incompletely-known Markov decision processes.

I A learning agent must be able to sense the state of its environment to
some extent and must be able to take actions that affect the state.

I The agent also must have a goal or goals relating to the state of the
environment.

I Markov decision processes are intended to include just these three
aspects –sensation, action, and goal– in their simplest possible forms
without trivializing any of them.

I Any method that is well suited to solving such problems
we consider to be a RL method.
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Reinforcement Learning

Supervised Learning I

I Learning from a training set of labeled examples provided by a
knowledgable external supervisor.

I Each example is a description of a situation together with a
specification –the label– of the correct action the system should take,
which is often to identify a category to which the situation belongs.

I The object of this kind of learning is for the system to extrapolate, or
generalize, its responses so that it acts correctly in situations not
present in the training set.

I This is an important kind of learning, but alone it is not adequate
for learning from interaction.
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Reinforcement Learning

Supervised Learning II

I In interactive problems it is often impractical to obtain examples of
desired behavior that are both correct and representative of all the
situations in which the agent has to act.

I In uncharted territory –where one would expect learning to be most
beneficial– an agent must be able to learn from its own experience.
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Reinforcement Learning

Unsupervised Learning I

I About finding structure hidden in collections of unlabeled data.
I The terms supervised learning and unsupervised learning would seem

to exhaustively classify machine learning paradigms, but they do not.
I Although one might be tempted to think of RL as a kind of

unsupervised learning because it does not rely on examples of correct
behavior, RL is trying to maximize a reward signal instead of trying to
find hidden structure.

I Uncovering structure in an agent’s experience can certainly be useful
in RL, but by itself does not address the RL problem of
maximizing a reward signal.
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Reinforcement Learning

Unsupervised Learning II

I We therefore consider RL to be a third machine learning paradigm,
alongside supervised learning and unsupervised learning and perhaps
other paradigms.
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Reinforcement Learning

Exploration vs Exploitation

I A particular challange that arises in RL, and not in other kinds of
learning.

I To obtain a lot or reward, a RL agent must prefer actions tried in the
past and found to be effective; but to discover such actions, it has to
try actions that it has not selected before.

I The agent has to exploit what it has already experienceed in order to
obtain reward, but it also has to explore in order to make better
action selections in the future.

I Although the dilemma has been intensively studied, it remains
unsolved.
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Reinforcement Learning

Goal-oriented Behavior

I RL explicitly considers the whole problem of a goal-directed agent
interacting with an uncertain environment.

I Example. Much of machine learning is concerned with supervise
learning without explicitly specifying such an ability would finally be
useful.

I Example. Theories of planning with general goals don’t consider
planning’s role in real-time decision making; nor the question of where
the predictive models necessary for planning would come from.

I These approaches focus on isolated subproblems, being inherently
limited.
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Reinforcement Learning

Agency

I We start with a complete, interactive, goal-seeking agent.
I All RL agents have explicit goals, can sense aspects of their

environments, and can choose actions to influence them.
I It is assumed that RL agents has to operate despite significant

uncertainty about the environment.
I When planning is involved, the following questions must be addressed:

I The interplay between planning and real-time action selection.
I How are environment models acquired and improved?

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation ABMS 2019 13 / 58



Reinforcement Learning

RL agents as subsystems

I By complete we do not mean something like a complete organism or
robot.

I Agents can also be a component of a larger behaving system,
interacting with the rest of the system and, indirectly, with the
system’s environment.

I Example: An agent that monitors the charge level of a robot’s battery
and sends commands to the robot’s control architecture.
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Reinforcement Learning

Background

I RL is part of a decades-long trend withint AI and ML toward greater
integration with statistics, optimization and other mathematical
subjects.

I Example: The ability of some RL algorithms to learn with
parameterized approximators addresses the classical “curse of
dimensionality” in operation research and control theory.

I Interactions are stronger with psychology and neuroscience, with
substantial benefits in both ways.

I RL research looks for general principles of learning, search, and
decision making. Simpler and fewer general principles of AI.
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Examples

Chess player

I A master chess player makes a move.
I The choice is informed by planning –anticipating possible replies and

counterreplies– and by immediate, intuitive judgments of the
desirability of particular positions and moves.
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Examples

Adaptive Controller

I An adaptive controller adjusts parameters of a petroleum refinery’s
operation in real time.

I The controller optimizes the yield/cost/quality trade-off on the basis
of specified marginal costs without sticking strictly to the set points
originally suggested by engineers.
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Examples

Animals

I A gazelle calf struggles to its feet minutes after being born.
I Half an hour later it is running at 20 miles per hour.
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Examples

Robots

I A mobile robot decides whether it should enter a new room in search
of more trash to collect or start trying to find its way back to its
battery recharging station.

I It makes its decision based on the current charge level of its battery
and how quickly and easily it has been able to find the recharger in
the past.
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Examples

We I

I Phil prepares his breakfast.
I This mundane activity reveals a complex web of conditional behavior

and interlocking goal-subgoal relationships:
I Walking to the cupboard.
I Opening it.
I Selecting a cereal box, then reaching for, grasping, and retrieving the

box.
I The same for getting the bowl, spoon and milk carton.
I Each step involves a series of eye movements to obtain information

and to guide reaching and locomotion.
I Rapid judgments are continually made about how to carry the

objects or whether it is better to ferry some of them to the
dinning table before obtaining others.
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Examples

We II

I Each step is guided by goals, such as grasping a spoon to eat with
once the cereal is prepared and ultimately obtaining nourishment.

I Whether he is aware of it or not, Phil is accessing information about
the state of his body that determines his nutritional needs, level of
hunger, and food preferences.
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Examples

Interaction

I All these examples involve interaction between an active
decision-making agent and its environment, within which the agent
seeks to achieve a goal, despite uncertainty about its environment.

I The agent’s actions are permitted to affect the future state of the
environment, e.g., the next chess position; the reservoir level of the
refinery; the robot’s next location and the future charge level of its
battery..

I Thereby affecting the actions and opportunities available to the agent
at later times.

I Correct choice requires taking into account indirect, delayed
consequences of actions, and thus may require foresight
or planning.
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Examples

Incompleteness

I In all these examples, the effects of actions cannot be fully predicted;
thus the agent must monitor its environment frequently and react
appropriately.

I Example: Phil must watch the milk he pours into his cereal bowl to
keep it from overflowing.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation ABMS 2019 23 / 58



Examples

Goal orientedness

I All these examples involve goals that are explicit in the sense that the
agent can judge progress toward its goal based on what it can sense
directly.

I Example: The chess player knows whether or not he wins; the refinery
controller knows how much petroleum is being produced; the gazelle
calf knows when it falls; the mobile robot knows when its batteries
run down; and Phil knows whether or not he is enjoying his breakfast.
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Examples

Experience

I In all these examples the agent can use experience to improve its
performance over time.

I Example: The chess player refines intuition he uses to evaluate
positions, thereby improving his play; the gazelle calf improves the
efficiency with which it can run; Phil learns to streamline making his
breakfast.

I The knowledge the agent brings to the task at the start –either from
previous experience with related tasks of built into it by design or
evolution– influences what is useful or easy to learn, but interaction
with the environment is essential for adjusting behavior to exploit
specific features of the task.
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Elements of Reinforcement Learning Overview

Elements

I Beyond the agent and the environment, one can identify four main
subelements of a RL system:
I A policy.
I A reward signal.
I A value function.
I Optionally, a model of the environment.
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Elements of Reinforcement Learning Elements

Policy

I A policy defines the learning agent’s way of behaving at a given time.
I Roughly speaking, a policy is a mapping from perceived states of the

environment to actions to be taken when in those states, i.e., a set of
stimulus–response rules or associations.

I In some cases the policy may be a simple function or lookup table,
whereas in others it may involve extensive computation such as a
search process.

I The policy is the core of a reinforcement learning agent in the sense
that it alone is sufficient to determine behavior.

I In general, policies may be stochastic, specifying probabilities
for each action.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation ABMS 2019 27 / 58



Elements of Reinforcement Learning Elements

Reward Signal

I A reward signal defines the goal of a reinforcement learning problem.
I On each time step, the environment sends to the reinforcement

learning agent a single number called the reward.
I The agent’s sole objective is to maximize the total reward it receives

over the long run.
I It defines what are the good and bad events for the agent, analogous

to pleasure or pain.
I The reward signal is the primary basis for altering the policy; if an

action selected by the policy is followed by low reward, then the policy
may be changed to select some other action in that situation in the
future.

I In general, reward signals may be stochastic functions of the
state of the environment and the actions taken.
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Elements of Reinforcement Learning Elements

Value Function

I A value function specifies what is good in the long run.
I Roughly speaking, the value of a state is the total amount of reward

an agent can expect to accumulate over the future, starting there.
I Whereas rewards determine the immediate, intrinsic desirability of

environmental states, values indicate the long-term desirability of
states after taking into account the states that are likely to follow and
the rewards available in those states.

I Example: A state might always yield a low immediate reward but
still have a high value because it is regularly followed by other states
that yield high rewards.

I Values correspond to a more refined and farsighted judgment.
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Elements of Reinforcement Learning Elements

Rewards vs Value Functions I

I Rewards are in a sense primary, whereas values, as predictions of
rewards, are secondary.

I Without rewards there could be no values, and the only purpose of
estimating values is to achieve more reward.

I Nevertheless, it is values with which we are most concerned when
making and evaluating decisions.

I Action choices are made based on value judgments –We seek actions
that bring about states of highest value, not highest reward, because
these actions obtain the greatest amount of reward for us over the
long run.

I Unfortunately, it is much harder to determine values than
it is to determine rewards.
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Elements of Reinforcement Learning Elements

Rewards vs Value Functions II

I Rewards are basically given directly by the environment, but values
must be estimated and re-estimated from the sequences of
observations an agent makes over its entire lifetime.

I In fact, the most important component of almost all RL algorithms
we consider is a method for efficiently estimating values.

I The central role of value estimation is arguably the most important
thing that has been learned about RL over the last six decades.
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Elements of Reinforcement Learning Elements

Model of the Environment

I A model mimics the behavior of the environment, or more generally,
that allows inferences to be made about how the environment will
behave.

I Example: Given a state and action, the model might predict the
resultant next state and next reward.

I Models are used for planning, by which we mean any way of deciding
on a course of action by considering possible future situations before
they are actually experienced.

I Methods for solving RL problems that use models and planning are
called model-based methods, as opposed to simpler model-free
methods that are explicitly trial-and-error learners –viewed
as almost the opposite of planning.
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Limitations and Scope

States I

I States are an input to the policy and value function, and both input
to and output from the model.

I Informally, a state as a signal conveying to the agent some sense of
“how the environment is” at a particular time.

I The formal definition of state as we use it here is given by the
framework of Markov decision processes, however, we encourage the
reader to follow the informal meaning and think of the state as
whatever information is available to the agent about its environment.

I We assume that the state signal is produced by some preprocessing
system that is nominally part of the agent’s environment.

I We do not address the issues of constructing, changing,
or learning the state signal.
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Limitations and Scope

States II

I We take this approach not because we consider state representation
to be unimportant, but in order to focus fully on the decision-making
issues.

I In other words, our concern is not with designing the state signal, but
with deciding what action to take as a function of whatever state
signal is available.
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Limitations and Scope

Value Functions I

I Most of the RL methods we consider are structured around estimating
value functions, but it is not strictly necessary to do this to solve RL
problems.

I Example: Solution methods such as genetic algorithms, genetic
programming, simulated annealing, and other optimization methods
never estimate value functions.

I These methods apply multiple static policies each interacting over an
extended period of time with a separate instance of the environment.
The policies that obtain the most reward, and random variations of
them, are carried over to the next generation of policies, and
the process repeats.
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Limitations and Scope

Value Functions II

I We call these evolutionary methods because their operation is
analogous to the way biological evolution produces organisms with
skilled behavior even if they do not learn during their individual
lifetimes.

I If the space of policies is sufficiently small, or can be structured so
that good policies are common or easy to find—or if a lot of time is
available for the search—then evolutionary methods can be effective.

I In addition, evolutionary methods have advantages on problems in
which the learning agent cannot sense the complete state of its
environment.
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Limitations and Scope

RL vs Evolutionary Methods I

I Our focus is on RL methods that learn while interacting with the
environment, which evolutionary methods do not do.

I Methods able to take advantage of the details of individual behavioral
interactions can be much more efficient than evolutionary methods in
many cases.

I Evolutionary methods ignore much of the useful structure of the RL
problem:
I They do not use the fact that the policy they are searching for is a

function from states to actions;
I They do not notice which states an individual passes through

during its lifetime, or which actions it selects.
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Limitations and Scope

RL vs Evolutionary Methods II

I In some cases this information can be misleading, e.g., when states are
misperceived, but more often it should enable more efficient search.

I Although evolution and learning share many features and naturally
work together, we do not consider evolutionary methods by
themselves to be especially well suited to RL problems.
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An Extended Example: Tic-Tac-Toe

Assumptions

X O O
O X X

X

I We are playing against an imperfect player, one whose play is
sometimes incorrect and allows us to win.

I Draws and losses to be equally bad for us.
I How might we construct a player that will find the imperfections in its

opponent’s play and learn to maximize its chances of winning?
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An Extended Example: Tic-Tac-Toe

Difficulties I

I Although this is a simple problem, it cannot readily be solved in a
satisfactory way through classical techniques.

I Example: The classical minimax solution from game theory is not
correct here because it assumes a particular way of playing by the
opponent, e.g., a minimax player would never reach a game state
from which it could lose, even if in fact it always won from that state
because of incorrect play by the opponent.

I Example: Classical optimization methods for sequential decision
problems, such as dynamic programming, can compute an optimal
solution for any opponent, but require as input a complete
specification of that opponent, including the probabilities with
which the opponent makes each move in each board state.
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An Extended Example: Tic-Tac-Toe

Difficulties II

I Let us assume that this information is not available a priori for this
problem, as it is not for the vast majority of problems of practical
interest. On the other hand, such information can be estimated from
experience, in this case by playing many games against the opponent.

I About the best one can do on this problem is first to learn a model of
the opponent’s behavior, up to some level of confidence, and then
apply dynamic programming to compute an optimal solution given
the approximate opponent model.
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An Extended Example: Tic-Tac-Toe

Evolutionary Approach I

I An evolutionary method applied to this problem would directly search
the space of possible policies for one with a high probability of
winning against the opponent.

I Here, a policy is a rule that tells the player what move to make for
every state of the game—every possible configuration of Xs and Os
on the three-by-three board.

I For each policy considered, an estimate of its winning probability
would be obtained by playing some number of games against the
opponent.

I A typical evolutionary method would hill-climb in policy space,
successively generating and evaluating policies in an attempt
to obtain incremental improvements.
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An Extended Example: Tic-Tac-Toe

Evolutionary Approach II

I Or, perhaps, a genetic-style algorithm could be used that would
maintain and evaluate a population of policies. Literally hundreds of
different optimization methods could be applied.
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An Extended Example: Tic-Tac-Toe

Value Function Approach I

I First we would set up a table of numbers, one for each possible state
of the game.

I Each number will be the latest estimate of the probability of our
winning from that state.

I We treat this estimate as the state’s value, and the whole table is the
learned value function.

I State A has higher value than state B, or is considered better than
state B, if the current estimate of the probability of our winning from
A is higher than it is from B.
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An Extended Example: Tic-Tac-Toe

Value Function Approach II

I Assuming we always play Xs, then for all states with three Xs in a row
the probability of winning is 1, because we have already won.
Similarly, for all states with three Os in a row, or that are filled up,
the correct probability is 0, as we cannot win from them.

I We set the initial values of all the other states to 0.5, representing a
guess that we have a 50% chance of winning.
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An Extended Example: Tic-Tac-Toe

Exploitation and Exploration

I We then play many games against the opponent.
I To select our moves we examine the states that would result from

each of our possible moves (one for each blank space on the board)
and look up their current values in the table.

I Most of the time we move greedily, selecting the move that leads to
the state with greatest value, that is, with the highest estimated
probability of winning.

I Occasionally, however, we select randomly from among the other
moves instead. These are called exploratory moves because they
cause us to experience states that we might otherwise never
see.
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An Extended Example: Tic-Tac-Toe

Graphically

starting position
a

b

c*

e

f

g*g
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e*

opponent’s move

our move

opponent’s move

our move

opponent’s move
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{
{
{
{
{
{

update
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An Extended Example: Tic-Tac-Toe

Updates I

I While we are playing, we change the values of the states in which we
find ourselves during the game.

I We attempt to make them more accurate estimates of the
probabilities of winning.

I To do this, we back up the value of the state after each greedy move
to the state before the move.

I More precisely, the current value of the earlier state is updated to be
closer to the value of the later state, i.e., moving the earlier state’s
value a fraction of the way toward the value of the later state:

V (St)← V (St) + α
[
V (St+1)− V (St)

]
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An Extended Example: Tic-Tac-Toe

Updates II

I α is a small positive fraction called the step-size parameter,
which influences the rate of learning.

I This update rule is an example of a temporal-difference learning
method, so called because its changes are based on a difference
V (St+1)− V (St), between two estimantes at two successive times.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation ABMS 2019 49 / 58



An Extended Example: Tic-Tac-Toe

Flexibility and Performance

I If the step-size parameter is reduced properly over time, then this
method converges, for any fixed opponent, to the true probabilities of
winning from each state given optimal play by our player.

I Furthermore, the moves then taken (except on exploratory moves) are
in fact the optimal moves against this (imperfect) opponent.

I In other words, the method converges to an optimal policy for playing
the game against this opponent.

I If the step-size parameter is not reduced all the way to zero over time,
then this player also plays well against opponents that slowly change
their way of playing.
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An Extended Example: Tic-Tac-Toe

RL vs Evolutionary Methods Revisited I

I To evaluate a policy an evolutionary method holds the policy fixed
and plays many games against the opponent, or simulates many
games using a model of the opponent.

I The frequency of wins gives an unbiased estimate of the probability of
winning with that policy, and can be used to direct the next policy
selection.

I But each policy change is made only after many games, and only the
final outcome of each game is used: what happens during the games
is ignored.
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An Extended Example: Tic-Tac-Toe

RL vs Evolutionary Methods Revisited II

I Example: If the player wins, then all of its behavior in the game is
given credit, independently of how specific moves might have been
critical to the win. Credit is even given to moves that never occurred!

I Value function methods, in contrast, allow individual states to be
evaluated.

I In the end, evolutionary and value function methods both search the
space of policies, but learning a value function takes advantage of
information available during the course of play.
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An Extended Example: Tic-Tac-Toe

Apparent Limitations

I Although tic-tac-toe is a two-person game, RL also applies in the case
in which there is no external adversary, that is, in the case of a game
against nature.

I RL also is not restricted to problems in which behavior breaks down
into separate episodes, like the separate games of tic-tac-toe, with
reward only at the end of each episode. It is just as applicable when
behavior continues indefinitely and when rewards of various
magnitudes can be received at any time.

I RL is also applicable to problems that do not even break down into
discrete time steps like the plays of tic-tac-toe. The general principles
apply to continuous-time problems as well, although the theory
gets more complicated.
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An Extended Example: Tic-Tac-Toe

Larger Problems

I Tic-tac-toe has a relatively small, finite state set, whereas RL can be
used when the state set is very large, or even infinite.

I Example: Gerry Tesauro [2, 3] combined the algorithm described
above with an artificial neural network to learn to play backgammon,
which has approximately 1020 states. The neural network provides the
ability to generalize from its experience, so that in new states it
selects moves based on information saved from similar states faced in
the past, as determined by its network.

I How well a RL can work in problems with such large state sets is
intimately tied to how appropriately it can generalize from past
experience.

I Supervised learning methods with RL. Neural networks and
deep learning are not the only, or the best, way to do this.
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An Extended Example: Tic-Tac-Toe

Knowledge

I Learning started with no prior knowledge beyond the rules of the
game, but reinforcement learning by no means entails a tabula rasa
view of learning and intelligence.

I On the contrary, prior information can be incorporated into RL in a
variety of ways that can be critical for efficient learning

I We also have access to the true state in the tic-tac-toe example,
whereas RL can also be applied when part of the state is hidden, or
when different states appear to the learner to be the same.

Dr. Alejandro Guerra-Hernández (UV) Agent-Based Modeling and Simulation ABMS 2019 55 / 58



An Extended Example: Tic-Tac-Toe

Model

I The tic-tac-toe player was able to look ahead and know the states
that would result from each of its possible moves.

I To do this, it had to have a model of the game that allowed it to
foresee how its environment would change in response to moves that
it might never make.

I Many problems are like this, but in others even a short-term model of
the effects of actions is lacking.

I RL can be applied in either case. A model is not required, but models
can easily be used if they are available or can be learned.
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An Extended Example: Tic-Tac-Toe

Model-free Systems

I There are RL methods that do not need any kind of environment
model at all.

I Model-free systems cannot even think about how their environments
will change in response to a single action.

I The tic-tac-toe player is model-free in this sense with respect to its
opponent: it has no model of its opponent of any kind.

I Because models have to be reasonably accurate to be useful,
model-free methods can have advantages over more complex methods
when the real bottleneck in solving a problem is the difficulty of
constructing a sufficiently accurate environment model.

I Model-free methods are also important building blocks for
model-based methods.
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