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Abstract

This work introduces CTL AgentSpeak(L), a logic to specify and verify expected properties of rational agents im-
plemented in the well known agent oriented programming language AgentSpeak(L). Our approach is closely related
to the BDICT L multi-modal logic, used to reason about agents in terms of their beliefs (B), desires (D), intentions
(I), and the temporal logic CT L. A new interpretation for the temporal operators, grounded in the transition system
induced by the operational semantics of AgentSpeak(L), is proposed. The main contribution of the approach is a better
understanding of the relation between the programming language and its logical specification, enabling us to prove
expected or desired properties for any agent programmed in the language, e.g., commitment strategies. The results, as
well as the specification language proposed, are very useful to reconcile computational and philosophical aspects of
practical reasoning, e.g., approaching single-minded commitment as a policy-based reconsideration case.
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1. Introduction

The theory of practical reasoning proposed by Bratman [3, 4], expounds the philosophical foundation for the com-
putational approaches to rational agency, known as BDI (Belief-Desire-Intention) systems. This theory is innovative
because it does not reduce intentions to some combination of beliefs and desires, but indeed it assumes that intentions
are composed by hierarchical, partial plans. Such assumption explains better temporal aspects of practical reasoning
as future intentions, persistence, reconsideration and commitment. Different multi-modal BDI logics [15, 17, 18]
have been proposed to formally characterize the rational behavior of such agents, in terms of the properties of the
intentional attitudes and the relations among them. For instance, blind, single-minded, and open-minded commitment
strategies [13] define when it is rational for a class of agents to drop an intention. Due to their expressiveness, these
logics are used to reason about the agents properties, e.g., if an agent is blind or single-minded committed; but they
are not used to program them, because of their computational cost.

Agent oriented programming languages, such as AgentSpeak(L) [14], have been proposed to reduce the gap be-
tween the theory (logical specification) and practice (implementation) of rational agents. Bordini et al. [2] have
completed the operational semantics for this language, and implemented an interpreter for it, known as Jason. Even
when this programming language has a well defined operational semantics, the verification of rational properties of
the implemented agents is not evident, since intentional and time modalities are abandoned for the sake of efficiency.
Questions like, what kind of commitment strategy is used by the AgentSpeak(L) agents? require a specification and
verification formalism in order to be answered. Furthermore, a formalism grounded in the operational semantics of
the programming language, is required to reason about such rational properties of the implemented agents.
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We propose CTL AgentSpeak(L) as a logic for specification and verification of AgentSpeak(L) agents. The ap-
proach proposed is similar to the BDICT L [15] logic, defined as a BKD45DKDIKD modal system, with temporal opera-
tors defined after the computational tree logic (CTL) [7], but redefines the semantics of the intentional and temporal
operators in order to ground them. The redefinition of the semantics for the CT L temporal operators in terms of a
Kripke structure, induced by the transition system defining the operational semantics of AgentSpeak(L) is the main
technical contribution of the paper. The semantics of the intentional operators (BDI) is adopted from the work of
Bordini et al. [1]. As a result, the semantics of CTL AgentSpeak(L) is grounded in the operational semantics of pro-
gramming language. In this way, we can prove if any agent programmed in AgentSpeak(L) satisfies certain properties
expressed in the logical specification.

This work was motivated by a question related to rational agents, learning, and commitment: can a single-minded
committed behavior [13] be approached as a policy-based reconsideration [3] where the policies are intentionally
learnt by the agents [8, 9, 11]? The question is relevant, because it reconciles the computational concept of commit-
ment (the blind, singled-minded, and open-minded strategies) with the philosophical concept of reconsideration (all
reconsideration of α opens the question of whether α), through an adaptive computation of the policy of reconsid-
eration (intentional learning). Because of this, the specification approach proposed here is exemplified verifying the
commitment strategies for AgentSpeak(L) to answer what kind of strategy is adopted by such agents.

The paper is organized as follows. Section 2 introduces the commitment strategies as defined using BDICT L [15]
and discusses briefly the reconsideration cases identified by Bratman [3]. Section 3 defines the syntax and semantics
of the agent oriented programming language AgentSpeak(L). The operational semantics defined in this section will be
used to define the semantics of the formalism proposed in this work. Section 4 presents the main contribution of the
paper, the definition of CTL AgentSpeak(L), a specification and verification formalism for AgentSpeak(L). Section 5
shows how the commitment strategies introduced in section 2 can be verified under CTL AgentSpeak(L). Section 6
offers concluding remarks and discusses future work.

2. Commitment

As mentioned previously, different computational theories have been proposed to capture the theory of Bratman [3]
on intentions, plans and practical reasoning. The foundational work of Cohen and Levesque [5], for example, defined
intention as a combination of belief and desire based on the concept of persistent goal. A critical analysis of this
theory [16] showed that it failed to capture important aspects of commitment. Alternatively, commitment has been
approached as a process of maintenance and revision of intentions, relating current and future intentions. Under the
latter approach, different types of commitment strategies define different types of agents. Three of them have been
extensively studied in the context of BDICT L [15], where CT L denotes computational tree logic [7], the well known
temporal logic:

• Blind commitment. An agent intending that inevitably (A) eventually (♦) is the case that φ, inevitably maintains
his intentions until (U) he actually believes φ:

INTEND(A♦φ) =⇒ A(INTEND(A♦φ) U BEL(φ)) (1)

• Single-mind commitment. An agent maintains his intentions as long as he believes they are not achieved or
optionally (E) they are eventually achievable:

INTEND(A♦φ) =⇒ A(INTEND(A♦φ) U (BEL(φ) ∨ ¬BEL(E♦φ)) (2)

• Open-mind commitment. An agent maintains his intentions as long as they are not achieved or they are still
desired:

INTEND(A♦φ) =⇒ A(INTEND(A♦φ) U (BEL(φ) ∨ ¬DES(A♦φ))) (3)
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ag ::= bs ps at ::= P(t1, . . . , tn) (n ≥ 0)
bs ::= b1 . . . bn (n ≥ 0) a ::= A(t1, . . . , tn) (n ≥ 0)
ps ::= p1 . . . pn (n ≥ 1) g ::= !at | ?at
p ::= te : ct ← h u ::= +b | − b
te ::= +at | − at | + g | − g
ct ::= ct1 | >
ct1 ::= at | ¬at | ct1 ∧ ct1
h ::= h1;> | >
h1 ::= a | g | u | h1; h1

Table 1: Sintax of AgentSpeak(L). Adapted from Bordini et al. [2]

For example, a blind agent (eq. 1) intending eventually to go to Paris, will maintain his intention, for any possible
course of action (inevitable), until he believes he is going to Paris. A single-minded agent (eq. 2) can drop such
intention if he believes it is not possible anymore to go to Paris, e.g., given a certain policy of reconsideration defining,
for instance, that such intention should be dropped if the plane ticket is too expensive; or more properly, believing that
if the plane ticket is to expensive then it is not eventually possible going to Paris. An open-minded agent (eq. 3) can
drop the intention if he does not desire anymore going to Paris.

Then, an interesting question is what kind of commitment strategy is followed by AgentSpeak(L) agents? Fur-
thermore, how can we relate commitment with policy-based reconsideration in AgentSpeak(L)? Bratman (see [3], pp.
60–75) argues that there are three cases of reconsideration in practical reasoning. Non-reflective reconsideration has
short effects, while deliberative one is very expensive. Policy-based reconsideration is a compromise between impact
and cost. Obviously, if an agent is blindly committed, we can not talk about any form of reconsideration. But if this
is not the case, single-minded commitment could be approached as a policy-based reconsideration, where policies are
computed through intentional learning [8, 9, 10, 11]. In this way we would reconcile a relevant aspect of the com-
putational theories of BDI agency (commitment) with its philosophical foundation (reconsideration à la Bratman).
Answering these questions was the main motivation of this work.

3. AgentSpeak(L)

The syntax and semantics of AgentSpeak(L) [14] adopted in this work, are defined after the specification for its
interpreter Jason [2]. The operational semantics of the language is given in terms of a transition system Γ that, being a
Kripke structure, is used to define the semantics of the intentional and temporal operators in the proposed specification
language CTL AgentSpeak(L).

3.1. Syntax
The syntax of AgentSpeak(L) is shown in table 1. As usual, an agent ag is formed by a set of beliefs bs (grounded

literals) and plans ps. Each plan p ∈ ps has the form triggerEvent : context ← body. The context of a plan is
a literal or a conjunction of them. A non empty plan body is a finite sequence of actions, goals (achieve or test an
atomic formula), and beliefs updates (addition or deletion). > denotes empty elements, e.g., contexts, plan bodies,
and intentions. The addition or deletion of beliefs and goals are known as trigger events.

For instance, table 2 shows an AgentSpeak(L) program for an agent called bob who has as an achieve goal (!) to
print the factorial of five (line 7). The agent bob initially believes that the factorial of zero is one (line 4). There are
three plans in the library of agent bob to accomplish his goal: p1, p2, and p3 (plan labels defined with @ are optional).
The plan p1 (line 11) is relevant when an achieve goal to print the factorial of a number is added, as defined in its
trigger event. Since the context of this plan is empty, it is always applicable. The body of p1 has two steps: the
achieve goal to compute the factorial (line 11) and an action to print the result (line 12). The plans p2 and p3 (lines 16
and 20, respectively) compute the factorial of a given number. The first one is only relevant when N = 0, as defined
in its trigger event. Its body include a test goal (?) to compute the factorial of zero (line 17). The second plan, as
expressed by its context, is applicable for N > 0. The output in the console is “[bob] Factorial of 5 is 120”.

In what follows, this example will be used to illustrate the concepts of the operational semantics for AgentSpeak(L)
that are relevant for the purposes of this paper.
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1 // Agent bob in project factorial.mas2j

2

3 /* Initial beliefs and rules */

4 factorial (0 ,1).

5

6 /* Initial goals */

7 !print_factorial (5).

8

9 /* Plans */

10 @p1

11 +! print_factorial(N) <-

12 !factorial(N,F);

13 .print (" Factorial of ",N," is ",F).

14

15 @p2

16 +! factorial (0,F) <-

17 ?factorial(0,F).

18

19 @p3

20 +! factorial(N,F) : N > 0 <-

21 !factorial(N-1,F1);

22 F = F1 * N.

Table 2: An AgentSpeak(L) program that computes the factorial of five (slightly modified from Bordini et al. [2], p. 12).

3.2. Operational semantics

The operational semantics of AgentSpeak(L) is defined in terms of a transition system Γ between configurations.
A configuration 〈ag,C,M,T, s〉 is composed of:

• ag is a tuple 〈bs, ps〉 formed by the beliefs bs and plans ps of the agent, as defined in the agent program.

• An agent circumstance C is a tuple 〈I, E, A〉 where I is a set of intentions {i1, i2, . . . , in} s.t. each i ∈ I is a stack
of partially instantiated plans p ∈ ps. The operator ‡ is used to separate elements in a stack. [α ‡ β] is a stack
with two elements, α at its top; E is a set of events {〈te1, i1〉 , 〈te2, i2〉 , . . . , 〈ten, in〉}, s.t. each te is a triggerEvent
and each i is a non empty intention (internal event) or an empty intention > (external event); and A is a set of
actions to be executed by the agent in the environment.

• M is a tuple 〈In,Out, S I〉 where In is the mailbox of the agent, Out is a list of messages to be delivered and
S I is a register of suspended intentions (intentions that wait for an answer message to be resumed). It is not
relevant for the purposes of this paper.

• T is a tuple 〈R, Ap, ι, ε, ρ〉 where R is the set of relevant plans given certain event; Ap is the set of applicable
plans (the subset of plans p ∈ R s.t. bs |= Ctxt(p), where the function Ctxt return the context of a given plan or
true if such context is empty); ι, ε y ρ are, respectively, the intention, event, and plan currently being considered
while reasoning.

• The label s ∈ {S elEv,RelPl, AppPl, S elAppl, S elInt, AddIM, ExecInt,ClrInt, ProcMsg} indicates the current
step in the reasoning cycle of the agent.

Transitions are defined in terms of semantic rules of the form:

(rule id)
cond

C → C′

where C = 〈ag,C,M,T, s〉 is a configuration that can be transformed into a new one C′, if cond holds.
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Appendix A includes the semantic rules that are relevant for the purposes of this paper. Since communication and
speech acts are out of the scope of this work, message processing rules have been omitted for simplicity. Figure 1
shows the transition system Γ induced by these semantic rules. States are labeled with possible values for s. Transi-
tions correspond to the semantic rules identifiers. The reasoning cycle of an agent starts at s = ProcMsg, processing
messages and updating the perception, which adds events to CE (Cα denotes the element α of circumstance C, the
same for other elements of a configuration). Then, at s = S elEv, one of these events is selected (SE(CE) = 〈te, i〉).
The selection functions for events (SE), intentions (SI), and applicable plans (SO) are assumed fair. By default, these
functions have a first-input-first-output behavior; but they can be redefined by the programmer, so that fairness must
be considered if this is the case.

ProcMsg

SelEv RelPl ApplPl

SelAppl

AddIM

SelInt

ExecInt

ClrInt

SelEv2

SelEv1 Rel1

Rel2

Appl1Appl2

SelAppl
ExtEv
IntEv

SelInt1

SelInt2

Action

AchvGl

TestGl1
TestGl2

AddBel
DelBel

ClrInt2

ClrInt1
ClrInt3

Figure 1: The interpreter for AgentSpeak(L) as a transition system.

Once an event 〈te, i〉 is selected, following S elEv1 leads to the computation of a set of relevant plans at s = RelPl,
accordingly to definition 1. If this set is empty, by the transition Rel2 a new event is selected. If there is not any event
in CE , by transition S elEv2 an intention is selected in order to be executed.

Definition 1 (Relevant plans). Given a set of plans agps, the subset of relevant plans for a selected event 〈te, i〉 ∈ CE ,
is defined as:

RelPlans(ps, te) = {(p, θ)|p ∈ ps ∧ θ = mgu(te,TrEv(p))}

where TrEv(te′ : context ← body) = te′ gets the trigger event of a plan, CE denotes the events E in a given
circumstance C, and mgu computes the most general unifier.

For instance, the factorial agent program (see table 2) will post an event when perceiving the achieve goal of
printing the factorial of five, s.t. CE = {〈+!print f actorial(5),>〉}. The computed set of relevant plans for such an
event is TR = {(p1, θ)}, where θ = {N/5}. Then, once a non empty set of relevant plans TR has been computed at
s = RelPl, following the transition Rel1 leads to the computation of a set of applicable plans TAp at s = AppPl, as
stated in the following definition:

Definition 2 (Applicable plans). Given a set of relevant plans TR and a set of beliefs agbs, the subset of applicable
plans is defined as:

AppPlans(bs,R) = {(p, θθ′)|(p, θ) ∈ TR ∧ θ
′ is s.t. bs |= Ctxt(p)θθ′}

where θ′ is the substitution computed when verifying if the context of relevant plan p, affected by its relevant substi-
tution θ, is a logical consequence of the beliefs of the agent bs. Ctxt(p) returns the context of plan p or true, if such
context is empty.

5



Following the factorial example, since the context of plan p1 is empty, then Ctxt(p1) = true which is verified to
be a logical consequence of the belief of the agent agbs with an associated empty substitution θ′ = ε, so that the set of
applicable plans in this case is TAp = {p1, θθ′}, where the substitution composition θθ′ = N/5.

Then the agent proceeds selecting an applicable plan to form an intention (following Appl1 to arrive at S elAppl)
or, if no applicable plans were found, selecting an intention to be executed (following Appl2 to arrive at S elInt1). The
execution of an intention changes the environment and the mental attitudes of the agent (dropping accomplished plans
and intentions at ClrInt included). ProcMsg generates new events, and so on.

Although the operational semantics of AgentSpeak(L) clearly defines the practical reasoning performed by an
agent, it is difficult to prove general rational properties for the implemented agents. For instance, it is difficult to verify
which commitment strategy (see eqs. 1, 2, 3) is followed by these agents. This is due to the abandon of intentional
and temporal modalities in AgentSpeak(L), the main reason to propose CTL AgentSpeak(L) for the specification and
verification of such properties.

4. CTL AgentSpeak(L)

CTL AgentSpeak(L) is closely related to BDICT L [13, 15]. The main idea is to redefine the semantics of temporal
and intentional operators in terms of the operational semantics of the programming language. This grounds the seman-
tics to reason about particular kinds of agents, in this case AgentSpeak(L) agents. Once this has been accomplished,
we can use the logic to reason about general properties of such agents. Similar approaches have been explored for
other instances of agent oriented programming languages, e.g, a simplified version of 3APL [6]. In what follows, the
syntax and semantics of the proposed formalism are defined.

4.1. Syntax

Well-formed formulae (wff) in CTL AgentSpeak(L) include intentional and temporal expressions:

Definition 3 (intentional wff). If φ is an atomic grounded formula in AgentSpeak(L), then φ, BEL(φ), DES(φ), and
INTEND(φ) are CTL AgentSpeak(L) wff.

Definition 4 (temporal wff). Temporal wff are divided, as usual, in state and path formulae. State wff are defined as:

s1 Every intentional wff is a state formula.

s2 If φ and ψ are state formulae, φ ∧ ψ and ¬φ are state formulae.

s3 If φ is a path wff, then Eφ (optional) and Aφ (inevitable) are state formulae.

Path wff are defined as:

p1 Every state wff is also a path wff.

p2 If φ and ψ are path wff, then ¬φ, φ ∧ ψ,©φ (next), ♦φ (eventually), and φ U ψ (until) are path wff.

For example, INTEND(A♦go(paris)) U ¬BEL(go(paris, summer), expressing that the agent will intend inevitably
(A) for every course of action, eventually (♦) going to Paris until (U) he does not believe go to Paris in summer, is a
well formed formula.

4.2. Semantics

The semantics of the intentional operators BEL, DES and INTEND is adopted from Bordini et al. [1]. First an
auxiliary function for getting the atoms (at) subject of an achieve goal in a given intention (+! at), is defined:

agoals(>) = {},

agoals(i[p]) =

{
{at} ∪ agoals(i) if p = +! at : context ← body,
agoals(i) otherwise
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Definition 5 (intentional semantics). The semantics of the BEL, DES, and INTEND operators for a given agent ag
and its circumstance C in an AgentSpeak(L) configuration is:

BEL〈ag,C〉(φ) ≡ agbs |= φ (4)

INTEND〈ag,C〉(φ) ≡ φ ∈
⋃
i∈CI

agoals(i) ∨
⋃

〈te,i〉∈CE

agoals(i) (5)

DES〈ag,C〉(φ) ≡ 〈+!φ, i〉 ∈ CE ∨ INTEND(φ) (6)

If the agent ag and his circumstance C are explicit, we simply write BEL(φ), DES(φ), and INTEND(φ). So an
agent ag is said to believe the atomic formula φ, if φ is a logical consequence of the beliefs bs of ag. An agent is said
to intend the atomic formula φ, if φ is the subject of an achieve goal in the active intentions of the agent (CI) or in
his suspended intentions associated to events to be processed (CE). An agent is said to desire the atomic formula φ, if
there is an event in CE which trigger is an achieve goal about φ or if φ is intended.

The semantics of the temporal operators: next(©), eventually (♦), and until (U), as well as the path quantifier
inevitable (A), required a Kripke structure 〈S ,R, L〉 where S is a set of states, R is a serial relation on S × S and L
is a labelling or a valuation function for formulae in the states. The transition system Γ (see figure 1), defining the
operational semantics of AgentSpeak(L), induces a Kripke structure:

Definition 6 (AgentSpeak(L) Kripke structure). K = 〈S ,R,V〉 is a Kripke structure induced by the transition system
Γ which defines the operational semantics of AgentSpeak(L), where:

• S is a set of agent configurations 〈ag,C,M,T, s〉.

• R ⊆ S 2 is a serial relation s.t. for all pair of configurations (ci, c j) ∈ R, it follows that Γ(ci) = c j.

• V is a valuation function over the intentional and temporal operators, defined after their semantics (see defini-
tions 5 and 7), e.g., VBEL(c, φ) ≡ BEL(φ) at the configuration c = 〈ag,C,M,T, s〉, etc.

As usual, x = c0, . . . , cn denotes a path in the Kripke structure, i.e., a sequence of configurations s.t. for all ci ∈ S ,
(ci, ci+1) ∈ R. The expression xi denotes the suffix of path x starting at configuration ci.

Definition 7 (temporal semantics). The semantics of the state wff is defined for a given current configuration ci ∈

KS :

K, ci |= BEL(φ) ⇔ φ ∈ VBEL(ci, φ)
K, ci |= INTEND(φ) ⇔ φ ∈ VINTEND(ci, φ)

K, ci |= DES(φ) ⇔ φ ∈ VDES(ci, φ)
K, ci |= Eφ ⇔ ∃xi∃c j≥i ∈ xi s.t. K, c j |= φ

K, ci |= Aφ ⇔ ∀xi∃c j≥i ∈ xi s.t. K, c j |= φ

The semantic of the path formulae is defined as follows:

K, ci |= φ ⇔ K, xi |= φ,where φ is a state wff

K, ci |= ©φ ⇔ K, xi+1 |= φ

K, ci |= ♦φ ⇔ ∃c j≥i ∈ xi s.t. K, c j |= φ

K, ci |= φ U ψ ⇔ (∃ck≥i s.t. K, xk |= ψ ∧ ∀ci≤ j<k K, x j |= φ) ∨
(∃c j≥i K, x j |= φ).

Observe that the semantics of until corresponds to weak until (ψ can never occur). Once satisfaction over state
and path formulae has been defined, we can define satisfaction and validity over AgentSpeak(L) runs.
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Definition 8 (Run). Given an initial AgentSpeak(L) configuration c0, the run K0
Γ

denotes the sequence of configura-
tions c0, c1, . . . such that ∀i ≥ 1, ci = Γ(ci−1).

Definition 9 (Satisfaction over runs). Given an AgentSpeak(L) run K0
Γ

the property φ ∈ CTL AgentSpeak(L) is
satisfied, if ∀i ≥ 0,K0

Γ
, ci |= φ.

Definition 10 (Validity). A property φ ∈ CTL AgentSpeak(L) is valid, if for any initial configuration, K0
Γ
, c0 |= φ,

e.g., if it is satisfied for any run of any agent.

5. Results about commitment strategies

Because of our interest in reconciling commitment strategies and policy-based reconsideration (see section 2),
we choose to verify if the blind (eq. 1) and single-minded (eq. 2) commitment strategies are valid in AgentSpeak(L).
Since policy-based reconsideration avoid seriously weighing desire-belief reasons for and against reconsideration ([3],
p. 61), the open-minded commitment is not considered here, although it can be proved in a similar way to single-
minded commitment. First, following the work on BDICT L [14], the no-infinite deferral axiom expressing that every
intention is eventually dropped, is verified:

Proposition 1. An AgentSpeak(L) agent satisfies the axiom of no-infinite deferral:

INTEND(φ)⇒ A♦(¬INTEND(φ)). (7)

Proof. Assume K, c0 |= INTEND(φ), then given the definition for INTEND (eq. 5), there is a plan p ∈ CI ∪CE with
head +!φ at c0. The non-infinite deferral axiom expresses that for all runs K0

Γ
eventually this plan will be removed from

CI (active intentions) and CE (suspended intentions). While p is being executed successfully, three runs are possible
given the transition rules ClrIntX ∈ Γ (Appendix A): i) ClrInt3 applies when the body of p is not empty, nothing is
cleaned; ii) ClrInt2 applies when the plan p, with an empty body, is at the top of an intention i, then p is dropped from
i; ClearInt1 applies when the intention i includes only the plan p with an empty body, the whole intention i is dropped.
Given the finite nature of the plans (section 3.1), if everything goes right, the condition (iii) is eventually reached. If
something goes wrong with p, a failure mechanism is activated by an event of the form 〈−!φ, i[p]〉 resulting in p being
dropped, so that condition (iii) is also eventually reached. �

Although the operational semantics of AgentSpeak(L) [2] only formalizes failures in finding relevant plans (see
Appendix A, Rel2), which discards suspended intentions in CE , other forms of failure detection have been considered
in the context of intentional learning [8, 9], e.g., when an action is not correctly executed; or when the expected effects
of the plan are not believed by the agent after its execution.

Proposition 2. An AgentSpeak(L) agent does not satisfy the axiom of blind commitment (eq. 1).

Proof. Given that AgentSpeak(L) agents satisfy the no-infinite deferral property (eq. 7), and the semantics of weak
until, the blind commitment axiom is reduced to (a similar reduction is used in Rao et al. [15]):

INTEND(A♦φ)⇒ A♦BEL(φ) (8)

Consider an initial configuration c0 s.t. agbs = {} and agps = {+b(t1) : > ← p(t2). +!p(t2) : > ← +b(t3).}.
Suppose a belief update s.t. agbs = {b(t1)}. An event is generated, so that CE = {〈+b(t1),>〉}. Following the transitions
S elEv1, Rel1, and ApplPl1 computes a new configuration where CI = {[+b(t1) : > ← !p(t2).]} and CE = {}. Proceeding
with the transitions S elAppl, ExtEv, S elInt1, AchvGl computes a configuration c′ where CE〈+!p(t2),+b(t1) : > ←
>〉, CI = {}. At this configuration, K, c′ |= DES(p(t2)) (see eq. 6). Following the transitions S elEv1, Rel1, AppPl1,
S elAppl computes a configuration c′′ where CI = {[+!p(t2) : > ← +b(t3).]} and CE = {}. At this configuration,
K, c′′ |= INTEND(p(t2)) (see eq. 5). Proceeding with the transitions IntEv, S elInt1, AddBel gets CE = 〈+b(t3),>〉,
agbs = {b(t1)}, CI = {[+b(t1) : > ← > ‡ +!p(t2) : > ← >]} and bs = {b(t1), b(t3)}. The intention about p(t2) is
maintained. Observe that the plan bodies in the intention are empty, so that ClrInt1 and ClrInt2 will discard the whole
intention. At the next configuration c′′′, K, c′′′ |= ¬INTEND(p(t2)) and K, c′′′ |= ¬BEL(p(t2)). By counter-example
the blind commitment axiom is not valid in AgentSpeak(L). �
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In fact, our agents do not satisfy the extended blind commitment axiom (eq. 1) neither, since the agent did not
keep his intention about p(t2) until he believed it. This reasoning is similar to the demonstration of intention-belief
incompleteness (AT2) for AgentSpeak(L) [1].

Proposition 3. AgentSpeak(L) agents satisfy a limited form of the single-minded commitment:

INTEND(A♦φ) =⇒ A(INTEND(A♦φ) U ¬BEL(E♦φ))

Proof. This case is similar to the no-infinite deferral demonstration. Assume that the agent INTEND(A♦φ) at c0,
then there is a plan p ∈ CI ∪ CE with head +!φ at c0. If there is a configuration ck≥0 where ¬BEL(E♦φ) (the weak
until definition has been adopted), then K, x0,...,k |= INTEND(A♦φ). Following the no-infinite-deferral demonstration,
in the plan execution failure cases the agent will eventually satisfy©¬INTEND(φ) because of Rel2, which means that
for an event 〈te, i[+!φ : context ← body]〉 there were not relevant plans to achieve φ so that it will be discarded, e.g.,
there is not a path of configurations where eventually φ would be achieved, so that it is rational to drop INTEND(φ).
The case of no-infinite deferral by successful execution of intentions covers the second condition of the weak until,
when ¬BEL(E♦φ) does not occur. �

This is a limited form of single-minded commitement because ¬BEL(E♦φ) is not represented explicitly by the
agents. In fact, the agent can not continue intending φ because there are no plans to do it and the intention fails.
This is an instance of non-reflective reconsideration where preemptive abandon of intentions is not possible, i.e., the
intention is dropped once it fails, not before. In order to obtain a full single-minded commitment enabling preemptive
abandon of intentions, ¬BEL(E♦φ) needs to be represented explicitly by the agents, for instance as in policy-based
reconsideration.

6. Conclusion

We have extended the methodology proposed by Bordini et al. [1] to reason about AgentSpeak(L) agents. Then
we proved that the blind commitment strategy is not valid in this agent oriented programming language. On the other
hand, a limited form of single-minded commitment is valid in AgentSpeak(L). The main limitation for these agents
with respect to commitment is the lack of an explicit representation for abandoning reasons. Guerra et al. [9, 10]
have suggested that intentional learning provides a solution for this, enabling a policy-based reconsideration. In
the intentional learning framework, when an intention fails, the agents learn by induction a first-order decision tree
covering the successful executions of the plan that failed. In this way, the context of the plans that failed are redefined
in terms of the branches of such trees, that lead to a success. Branches that lead to a failure can be used to define a
policy for reconsideration.

Proving that AgentSpeak(L) agents are at least partially single-minded, enabled us to continue the research on a
policy-based reconsideration based on intentional learning to accomplish full single-minded commitment. In recent
experiments for a simple blocks world implemented in Jason [2], we found that policy-based reconsidering agents
are much more tolerant to fast changes in the environment that the default partially single-minded agents, and event
significantly more robust than intentional learning agents (reconsidering only the context of their plans). Interestingly,
the degree of boldness and cautiousness for a given agent is something hard to define. It is well known [12] that in
dynamic environments a very cautious agent performs better than a bold one; and inversely, in static environments
boldness pays better. The relevance of learning intentionally is that the right degree of cautioness is learned by the
agents, instead of being established once and forever by the programmers.

An extended AgentSpeak(L) operational semantics that deals with intentional learning, for both incremental and
batch inductive methods, has been proposed by Guerra et al. [11]. It is inspired in the way AgentSpeak(L) is extended
with speech acts: adding operational semantic rules that are implemented as a plan library. Using the techniques
presented here, it is possible to arrive to a theory of commitment, reconsideration and learning, including rules like:

(Abandon)
SE(CE) = 〈+abandon(i),>〉 ∧ agbs |= intending(i)
〈ag,C,M,T, S elEv〉 → 〈ag′,C′,M,T, S elEv〉

s.t. C′E = CE\{〈+abandon(i),>〉}, agbs 6|= intending(i),C′I = CI\i〉
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expressing that when an agent is intending i and an event with the trigger +abandon(i) is generated by the policy
learned by the agent, the intention is removed from CI and the event is removed from CE .

In this way we will be in position to experiment with these full singled-minded AgentSpeak(L) agents, and to
prove if the expected properties introduced are valid or not using CTL AgentSpeak(L). This illustrates the relevance of
the specification language proposed in this paper, to bring AgentSpeak(L) closer to its philosophical foundation and to
extend our computational theories of practical reasoning.
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A. AgentSpeak(L) operational semantics rules

The following AgentSpeak(L) operational semantics rules are relevant for the purposes of this paper, in particular
for defining the Kripke structure supporting the semantics of temporal operators to reason about AgentSpeak(L) agents.
They are adapted from Bordini et al. [2].

(SelEv1)
SE(CE) = 〈te, i〉

〈ag,C,M,T, S elEv〉 → 〈ag,C′,M,T ′,RelPl〉

s.t. C′E = CE\{〈te, i〉},T ′ε = 〈te, i〉

(Rel1)
Tε = 〈te, i〉,RelPlans(agps, te) , {}

〈ag,C,M,T,RelPl〉 → 〈ag,C,M,T ′, AppPl〉

s.t. T ′R = RelPlans(agps, te)

(Rel2)
RelPlans(ps, te) = {}

〈ag,C,M,T,RelPl〉 → 〈ag,C,M,T, S elEv〉

(Appl1)
ApplPlans(agbs,TR) , {}

〈ag,C,M,T, ApplPl〉 → 〈ag,C,M,T ′, S elAppl〉

s.t. T ′Ap = AppPlans(agbs,TR)

(SelAppl)
SO(TAp) = (p, θ)

〈ag,C,M,T, S elAppl〉 → 〈ag,C,M,T ′, AddIM〉

s.t. T ′ρ = (p, θ)

(ExtEv)
Tε = 〈te,>〉,Tρ = (p, θ)

〈ag,C,M,T, AddIM〉 → 〈ag,C′,M,T, S elInt〉

s.t. C′I = CI ∪ {[pθ]}

(SelInt1)
CI , {},SI(CI) = i

〈ag,C,M,T, S elInt〉 → 〈ag,C,M,T ′, ExecInt〉

s.t. T ′ι = i

(SelInt2)
CI = { }

〈ag,C,M,T, S elInt〉 → 〈ag,C,M,T, ProcMsg〉

(AchvGl)
Tι = i[head ←!at; h]

〈ag,C,M,T, ExecInt〉 → 〈ag,C′,M,T, ProcMsg〉

s.t. C′E = CE ∪ {〈+!at,Tι〉},C′I = CI \ {Tι}
10



(ClrInt1)
Tι = [head ← >]

〈ag,C,M,T,ClrInt〉 → 〈ag,C′,M,T, ProcMsg〉

s.t. C′I = CI \ {Tι}

(ClrInt2)
Tι = i[head ← >]

〈ag,C,M,T,ClrInt〉 → 〈ag,C′,M,T,ClrInt〉

s.t. C′I = (CI \ {Tι}) ∪ {k[(head′ ← h)θ]} if i = k[head′ ← g; h] and gθ = TrEv(head)

(ClrInt3)
Tι , [head ← >] ∧ Tι , i[head ← >]

〈ag,C,M,T,ClrInt〉 → 〈ag,C,M,T, ProcMsg〉
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