
Computación y Sistemas  Vol. 2,  Nos. 2-3 pp. 87-94
 1999, CIC – IPN. ISSN 1405-5546   Impreso en México

___________________________________________________________________________________

_____

87

Eels: Electric Snakes

Antonio Marín-Hernández
Facultad de Física e Inteligencia Artificial

Universidad Veracruzana
Sebastián Camacho # 5, Xalapa, Veracruz, México.

amarin@mia.uv.mx

Homero V. Ríos-Figueroa
Laboratorio Nacional de Informática Avanzada, A. C.

Rébsamen # 80, Xalapa, Veracruz, México.
hrios@xalapa.lania.mx

Article received on September 18, 1998; accepted on February 12, 1999

Abstract

This paper presents the incorporation of a new internal
force for active contours. This internal force is generated by
an electric charge, distributed all-over the active contour.
Our extended contour model can describe objects with high
curvature, without increasing the number of control points.
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1 Introduction

Snakes or active contours were originally proposed in (Kass
et al., 1987), as a segmentation tool based on energy
minimizing. This kind of contours has been used in many
image analysis applications, particularly to locate object
boundaries.

Simulated internal and external forces deform snakes to
adapt to the object’s shape. The internal forces are normally
the rigidity and the tension, while the external forces are
defined as a scalar potential function over the image plane.

A snake is a parameterized curve v with components x(s)
and y(s) , where s is defined in the unit domain [0,1]. We
represent the contour v locally by piecewise polynomials,
generated by cubic B-Splines.

There are several methods for achieving the minimal
energy state. One of the most used is dynamic programming
proposed by (Amini, 1990). However the time complexity is
O(nmk+1), where k  indicates the highest order derivative of
the contour geometry, n is the number of control points and
m is the number of possible choices at each control point.

Basically there are two mayor problems with this
representation. We need more control points in the regions
with high curvature and we cannot interpolate control points
with B-Splines. By replicating control points, one can force
a B-Spline to interpolate the control points. In (Menet et al.,
1990) control points are duplicated in regions where after N
steps of contour deformation, the curvature is higher than a
threshold. However, if we increase the number of control
points the time complexity increases too.
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Schnabel and Arridge (1995) proposed the introduction of
Multiscale Differential Operators (MDO), who are invariant
to linear intensity transformations such as contrast or
brightness adjustments and independent of coordinate
transformations. In order to introduce MDO to achieve
matching, the active contour energy model has to be
modified, integrating information of the image and contour
curvature for every patch in the contour. This increases the
complexity of the algorithm making it slower and reduces
possibilities for tracking objects.

Another important idea that contributed to this paper is the
introduction of Gradient Vector Flow (GVF) as a new
external energy (Xu and Prince, 1997). GVF is computed as
a diffusion of the gradient vectors derived from the image.
The GVF is like an electrostatic potential produced by an
electrical charged object. The introduction of GVF makes
the active contour able to converge to boundary concavities,
but the reported computation of GVF for a 256 x 256-pixel
image takes more than 50 seconds.

We propose an electric charge density uniformly
distributed over each span of the initial contour, in order to
concentrate more control points in the regions of high
curvature as a result of the internal electrostatic forces,
without increasing the number of control points.

2 Active contour model

For active contours we define an energy function as:

E(v) = Ei(v) +Ee(v), (1)

where Ei is the internal energy and Ee is the external energy,
over the contour v. The contour v is a mapping from the unit
parametric domain s∈[0,1] into the image plane.

We define the internal energy as:
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where the subscripts on v denoted differentiation with
respect to s, ω1 and ω2 are parameter functions which
control the tension and the rigidity, respectively.

Originally (Kass et al., 1987), the external energy was
divided in two parts:

Ee(v) = Eimage(v) +Erest(v),

where Eimage contains image information and Erest contains
external restrictions. This division is not necessary, because
sometimes, as explained in the introduction, a combination
of these two energies is used in one term.

We use the external energy as follows (Terzopoulos and
Szeiliski, 1992):
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where P(x,y) is a scalar potential function defined over the
image plane, as:
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where c controls the magnitude of the potential and Gσ*I
denotes the image convolved with a Gaussian filter. The ∇
operator represents the gradient of the image intensities.

Some authors (Terzopoulos and Szeliski, 1992) define a
kinetic energy for the contour, in order to make a dynamic
energy minimization. Then they define the Lagrangian
(Terzopoulos, 1987) in terms of the kinetic and potential
energy of the contour, and then get the Lagrange equations
of motion.

In this paper we did not use the Langrangian formulation,
instead we use dynamic programming for the energy
minimization, as described below.

3 Contour representation

There are several contour representations that can be
divided in two classes, depending on whether they are
global or local. Global representations are typically compact
but changes in one shape parameter affect the entire contour,
and conversely, local changes of the contour affect all
parameters.

On the other hand, local representations control the
contour shape by various parameters, which depend locally
on contour shape; this makes local representations well
suited in a shape reconstruction context. Most local
representations used describe contours in terms of piecewise
polynomials. Each segment is described by a polynomial in
s.

Cubic B-Splines present an efficient way to represent
curved objects, where each segment of the curve vi is
defined by four control points (Pi-1, Pi, Pi+1, Pi+2 ) as:
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One of the problems with this representation is the fact
that B-Splines do not interpolate control points. Sometimes
this problem is solved duplicating control points when the
curvature is higher than a threshold (Menet et al., 1990).
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In (Gavrila, 1996) a Hermite contour representation is
proposed, which is obtained replacing the square matrix in
(5) by:
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and the control vector by:
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where Pi-1, Pi are control points and, τ+
i-1, τ-

i are tangent
vectors at points i-1 and i respectively.

This technique has the following advantages:
- Efficiently represent both smooth and sharp contours.
- Easily interpolates control points.
But has the following disadvantage. It is necessary to have

information of the tangent vector in every control point in
order to get the span parameters. This can be solved using a
template matching strategy, but then we need templates for
every object.

4 Energy minimization

There are many ways to solve the minimization problem.
One possibility for discrete spaces is to use AI techniques,
but they need an exhaustive enumeration of the possible
solutions.

We use dynamic programming popularized by (Amini,
1990) in multiple scales to decrease the computational cost.
Basically, the dynamic programming consists in search
around a control point and finding which neighbor produces
a minimum energy (Fig. 1).

We accelerate the dynamic programming using multiple
scales, convolving the image at every scale with a Gaussian
filter of standard deviation σ. We begin the search for every
control point on the curve, over the eight closer neighbors at
a distance σ, as described in Fig. 2.

Once we find a contour with a minimum energy we
reduce the scale and repeat the same process for each scale,
where we use as the initial contour the one found in the
previous scale.

Figure 2. Eight closer neighbors of a control point Pi at scale σ.

This technique has a problem when the control points are
close and σ has approximately the same value. In this case a
control point can find a minimum in a region between the
neighbors control points. The resulting curve will have a
twist over itself as shown in Fig 3. One way to solve this
problem is using a threshold. If the distance between two
control points is smaller than the threshold that position is
invalid. Another way is reducing the neighbor's search along
lines that are normal to the initial curve (Curwen and Blake,
1992). An interesting reduction of complexity for this search
is shown in (Olstad and Tysdahl, 1993). It is based
principally on constrains for the selection of candidate
points.

Figure 1. Dynamic programming search.
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(a) (b)

(c) (d)
Figure 3. (a) Object, (b) contour minimization, (c) and (d) contour twisted.

5 Electric snakes

We propose to assign a constant electric charge Q over the
contour, in order to get an electric force between every pair
of points in the contour, described as:

2

2

r
qk=F (6)

where q is the electric charge associated to every point, r is
the distance between points and k is a constant.

The electric charge is distributed uniformly over the initial
snake, in order to make that each span has the same charge.
The main purpose is to make a repulsion force between each
point associated with control points, where the energy is
calculated. This force produces that control points can
approach to one another only when the other forces in the
model are greater than the electric force.

We use the following physics results (Weidner and Sells,
1971):
(a) In a conductor of arbitrary shape with a net charge, all

of the net charge will reside on the outer conductor
surface.

(b) The electric field lines are always perpendicular to the
exterior conductor surface.

(c) The electrical field inside any conductor is exactly zero.
(d) Once the conductor has reached the equilibrium the free

charges do not move over the surface.

Therefore, the electric charge density in a conductor with a
net charge will be greater in regions where the curvature is

high (Feynman et al., 1964; Price and Crowley, 1985).

Figure 4. In a charged conductor the electric field is strong at
points of high curvature (Weidner and Sells, 1971).

Then, when equilibrium is reached the control points will
be form clusters in regions where the curvature is high, and
they are not going to move around the surface.

The total energy equation will be:
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Using equation (7) in energy minimization, the control
points will define in a better way the contour, without
increasing the number of control points and the time
complexity.
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6 Results

The following images show the results of contour fitting with standard and electric snakes.
Figure 5 (a) displays the image energy computed as described in equation (4), in (b) the standard snake fits a mouse embryo.
Here we can find regions where the active contour is twisted (dotted circles). The contour is evolving towards the object in
(c) and in (d) the object is fitted. The distribution of control points with electrical forces makes a better description of the
contour.

(a) (b)

(c) (d)

Figure 5. (a) Potential energy in mouse embryo image, (b) contour adjust with standard snake, (c) snake evolution
with electric forces and (d) final fit with electric snake.
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Figures 6 (a), (b) and (c) show anatomical structures in head tomographies, identified by standard snakes. The same
structures are better fitted by electric snakes (fig. 6.d, e and f). Another example of segmentation of biological shapes
(Phytoplankton) is presented in figure 7.

(a) (b) (c)

(d) (e) (f)

Figure 6. (a), (b) and (c) final fit with standard snake, (d), (e) and (f) final fit using electric forces.

(a) (b) (c)

Figure 7. Phytoplankton adjustment (a) original image, (b) standard snake and (c) electric snake.
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A final example of electric snakes is object tracking (figure 8). The final snake fit in each frame is used as initial contour
for the next frame. The performance of our implementation on a SGI Indy is between 8 to 16 frames per second, depending
on the number of control points used.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Object tracking: (a) initial contour, (b) contour evolution, (c) final fit, (d) (e) y (f) electric snake tracking.
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7 Conclusions

We have presented a new internal force for active
contours, which adapts to points of high curvature. This
force follows electromagnetic properties of matter and is
modeled by introducing a uniformly distributed charge over
the initial snake. As the contour evolves the control points
concentrate around regions of high curvature, without the
need of introducing additional control points. The number of
control points needed depends on the number of regions of
high curvature and the application, but it was shown that a
few points are enough to describe and track objects not too
complex.
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