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Abstract. In this paper we present a framework to construct 
topological-metric 2D maps of indoor environments for autonomous 
mobile robot navigation. The topological part is represented by a 
bidirectional graph. Nodes in the graph represent one of the three kind 
of spaces characterized. Arcs represent a way of communication 
between them, usually a door. Spaces have been initially characterized 
in three classes: large or medium size rooms, and corridors. For each 
node in the graph a metrical map is constructed. Polylines structures 
have been used to represent data on metrical maps in order to 
incorporate more cognitive information. We propose that for each kind 
of room, a planning method should be used. Three path-planning 
methods were studied: classical visibility graphs, Voronoi diagrams and 
polygonal triangulation.  

1.  Introduction 

A service robot can be used for many applications, including: cleaning & 
housekeeping, museum guidance, surveillance, etc.  In order to achieve must of these 
tasks an autonomous mobile robot must be capable of construct and maintain maps of 
their environment while at the same time the robot need to be localized on it. Many 
techniques for this problem called “Simultaneous Localization and Mapping” or 
simply SLAM, have been proposed on recent years.  

Researchers on the field have been proposed two major paradigms; by one side 
metrical map representations and topological maps on the other. For metric map 
representations such as grid-occupancy [1] or line-segments [2], powerful 
probabilistic methods have been developed within a single frame of reference. Many 
of these methods are accurate and reliable when doing online incremental localization 



72      Antonio Marin-Hernandez, Miguel Angel Navarrete 

within local neighborhoods. However, the complexity of metric maps often prohibits 
efficient planning and problem solving in large-scale indoor environments.  

A topological map is a concise description of the large scale structure of the 
environment. It compactly describes the environment as a collection of places linked 
by paths. In order to have the topological representation, topological maps encode 
different information of the environment. For example in [82], a generalized Voronoi 
graph is used to encode salient features of the environment. On [54] a Delaunay 
Triangulation of the free space is used to generate topological map. 
Topological and metrical methods for representing spatial knowledge have 
complementary strengths. To take advantage of their strengths some works have been 
proposed using hybrid (Topological-metric) maps, obtaining very good results [56]7. 

However, for a service robot, it is important on one hand to understand the use and 
utility of each kind of area in order to better plan their path and actions; and on the 
other hand a service robot must be able to explain to an human how to arrive from 
one place to another, in a more natural human way. (i.e. Take first door and follow the 
corridor until ..., etc.). In order to achieve this task cognitive space representation 
should be as closer as possible to human conceptions. Moreover, understanding the 
uses and utility of each kind of space should bring a mobile robot the capacity to react 
or plan their actions in such kinds of specific environments. In other words a robot 
must be able to construct and maintain cognitive maps. 

We proposed a cognitive map composed of a topological map of metric local space 
representations. Each local space defines a part of the environment that appears to 
enclose the robot: a room or a corridor.  The advantage of such a map for a robot is 
that cumulative positional error is constrained to the local representation. Simpler 
localization methods will often suffice for the local environment as global metric 
consistency is not required. 

The topological part is represented by a bidirectional graph, where nodes represent 
one of the three kinds of areas initially characterized. Arcs in the graph represent a 
way of communication between areas, usually a door. The areas initially 
characterized in three classes: large or medium size rooms, and corridors. For each 
node in the graph a metrical map is constructed. Polylines structures have been used 
to represent data on metrical maps in order to incorporate more cognitive information. 
As each kind of area has different characteristics, we propose to re-study path 
planning algorithms specifically for each kind of area in order to classified algorithms 
to be applied for a specific area. In this work, three path planning methods were 
studied initially: classical visibility graphs, Voronoi diagrams and polygonal 
triangulation. 

This paper is organized as follow; section 2 refers to the way as each metric map is 
constructed with  poly-lines structures by means of the discrete curve evolution 
method [128]. In section 3, specific areas are characterized and the topological part is 
constructed. Path planning methods and results for each area are shown in section 4, 
and finally in section 5 we express our conclusions and future work. 
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2 Discrete Curve Evolution Mapping 

For metrical map robot creation internal geometric representation plays an important 
role. Typically, either, the planar location of laser range finder (LRF) is used directly 
as geometric representation, or simple features in the form of line segments or corner 
points are extracted [10, 11]. However, these simples and primitive geometric 
representations affect the overall performance of SLAM techniques.  

Recently, polygonal curves or polylines representations have been used to deal 
with geometric mapping [8, 9]. This geometric representation is more compact and 
useful. Polyline representation captures more context than other features typically 
employed in scan matching approaches. Moreover, this internal representation fulfills 
requirements for the desired cognit|ive and reasoning mapping. 

In order to get the metric part of the approach proposed, initially, range data 
acquired by the LRF are stored as locations of reflection points in the Euclidean 
plane, represented as points. Thus, we obtain a sequence of scan points in the plane in 
a local coordinate system, the robot's heading aligned with the positive y-axis. 

The order of the sequence of data reflects the order returned by the LRF. 
Nevertheless, in this sequence two consecutive points do not necessarily belong to the 
same object. The next step is to segment this sequence into polylines that represent 
visual parts of the scan. In this way, different objects in the scan sequence will not be 
represented by the same polyline. An object transition is said to be present wherever 
two consecutive points measured by the LRF are further apart than a given distance 
threshold. 
For this segmentation, a simple heuristic is used: whenever the Euclidean distance of 
two consecutive points exceeds a given threshold we finish a polyline and start a new 
one. The obtained polylines represent boundaries of objects (Fig.1). Generally indoor 
environments are very structured, e.g. long walls, corridors, polygonal rooms, etc. We 
consider small polylines structures as noise, obstacles or moving objects no forming 
part of the map, talking about small the total length and/or the number of vertexes in 
the polyline structure. 
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Fig. 1. Initially polyline map formed from segmented raw scan data, each polyline represent 
different objects. Smalls groups in length or number of vertex are considered noise or obstacles.  

 
This part let us keep just the relevant polylines in the map reducing accumulative 

errors. Segmented polylines still contain all the information read form the LRF. 
Discrete Curve Evolution 

We apply discrete curve evolution method (DCE), as proposed in [12], to reduce 
noise as well as to make the data compact without loosing valuable information. DCE 
is a context sensitive process that proceeds iteratively:  

Let P be a polyline, we will denote the vertices of P with vertices(P). A discrete 
curve evolution produces a sequence of polylines P = P0,…, Pm, such that each 
segment on the polyline has a cost function K greater than a given threshold. DCE can 
be summarized as follow: 

For every evolution step i = 0,…, m – 1, a polyline Pi+1 
is obtained after the vertices whose relevance measure 
is: a) minimal and b) less than a given threshold, have 
been deleted from Pi. 

To each vertex v in Pi is assigned a relevance measure K(v, Pi) that can be see as 
the cost of removing the given vertex in order to get a straight-line segment between 
its two neighbors.  

In order to give a precise definition of the discrete curve evolution, we define 
Kmin(Pi) to be the smallest value of the relevance measures for vertices of Pi: 

Kmin(Pi) = min{K(u,Pi) : u ∈ vertices(Pi)} (1) 

and the set Vmin to contain the vertices whose relevance measure is minimal in Pi : 

Vmin (Pi) = {u ∈ vertices(Pi): K(u, Pi) = Kmin(Pi)}, for i = 0, …, m - 1. (2) 

 
For a given polyline P and a relevance measure K, we call a discrete curve 

evolution a process that produces a sequence of polylines P = P0,…,Pm such that 

vertices(Pi+1) = vertices (Pi) / Vmin(Pi), (3) 

The process of the discrete curve evolution is guaranteed to terminate, because it 
stops when the number of vertices are less than a given vertex threshold Tv or when 
there is no more relevance associated measures under the given relevance threshold 
Tr. On the other hand, if precedent conditions are not satisfied, in each evolution step, 
the number of vertices decreases by at least one. 
 

The key property of the evolution we used for our experiments is the order of the 
deletion determined by the relevance measure K(v,Pi) which depends on vertex v and 
its two neighbor vertices u and w in Pi. It is given by the formula: 
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where β is the turn angle at vertex v in Pi, l1 is the length of segment vu, and l2 is the 
length of segment vw (Both lengths are normalized with respect to the total length of 
the polyline Pi). Intuitively it reflects the shape contribution of vertex v in Pi. The 
main property is the following: 

 
The higher the value of K(v,u,w), the larger is the contribution of arc vu ∪ vw to 

the shape of polyline Pi. Relevance measure (4) has been defined in [12], where the 
tangential space is used to derive (Fig. 2). 

Observe that this relevance measure is not a local property with respect to the 
polygon P, although its computation is local in Pi for every vertex v.  
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(g) (h) 

 
 

(i) (j) 

Fig. 2. Discrete curve evolution. In left images, it is shown different stages of the DCE method 
applied to one polyline structure. Images on the right side are the tangent space representation, 
used to compute the relevance measure K. 

 

 
Fig. 3. Landmark selection based on relevance measure K. The length of adjacent segments 
and turn angles are used to get a similarity measure.  

 
Finally, proceeding this way we obtain an ordered vector of polylines for each scan 

raw data. 
To match polylines against the local metric map of the area, significant features, 

here also called landmarks are extracted, taking into account the higher relevance 
measures K, as computed in (4). As we can see in (Fig. 3), these vertexes are 
commonly the turning points on the polyline structure with most influence on its 
shape. These relevance measures K are the same computed on the final step of the 
DCE method.  

Once this set features fs have been selected for all the polylines in the current scan. 
We search the correspondence with a selected group of similar features in the map. 
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We select a subset fg of visible features on the previous global map Gt-1 at the 
previous robot location xt-1. These features are obtained in a similar way as for the 
single scans, determined by the relevance measure K over the polyline structure as 
described in [13].  

The matching process uses as similarity measures: the relevance K for each 
selected landmark, as well as, the length l1 and l2 of the two adjacent segments (Fig. 
4).  

Landmarks near both edges of the field of view are commonly difficult to match, 
mainly because adjacent segments can be not completely perceive, so length of 
segments very different. Therefore, landmarks in polylines with the entire vertex 
inside the field of view have more weight for the matching process, than the 
landmarks inside polylines touching the field of view edges. 

 

 
Fig. 4. Occupancy grid map of the environment used in this work  

 

3 Area Characterization and Topological Map Construction 

In order to obtain a local map for a specific area, it is considered in this work that 
each space to characterize has more or less a convex form, in other words the surface 
of the convex hull of the local area are very close to the surface of the area. If the 
difference is greater than a given threshold we try to segment this area into two or 
more pieces. Another consideration is that commonly a door can be easily extracted 
from polylines data, considering that there is a gap between polylines structures 
greater than a threshold, here 60 cm. In Fig. 5 it is show an occupancy grid of the 
environment used in this work. 

We have defined initially three kinds of areas: large rooms, medium rooms and 
corridors. In Fig 6 are shown one example of each area. Basically, the difference 
between large and mediums rooms is defined only by a surface threshold, which in 
our case is 50 m2. Corridors are determined using the size of their perpendicular sides, 
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if the ratio of the sizes of the room is less than 1/3, and the smaller size is between 
certain measures, we select this area as a corridor.  

The topological map is then created using the three classes of areas classified. Each 
node is then connected to the nodes by an arc for which there is a way of 
communication between them (i.e. a door). In Fig. 7 it is shown the resulting graph 
for a simple environment. 

 

 
(a) 

 
 

(b) (c) 

Fig. 5. Examples of areas classification: a) Large room (> 50m2), computer center of IA dept 
at UV, (b) medium room (<50m2) robotics classroom and (c) corridor. 

4 Path Planning Study 

At topological state, we solve path planning by means of a simple first in depth 
search. However, at each local metrical state a classical path planning method should 
be used. As each one of the characterized spaces have different uses and 
characteristics, it is important to evaluate different path planning methods in order to 
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get the ones with better results. Initially cognitive considerations as for example the 
use of each space are not considered, but it will be included in future studies. 
In order to simplify the path planning labor, we are interested in methods that would 
bring us a predefined path for each surface, in other words, for each area we want to 
have a pre-computed partial solutions. 

 

 
Fig. 6. Graph representing the topological extracted map: LR are Large rooms, MR are 
mediums rooms and C are corridors.  

 
We have focused initially our study in three path-planning methods: Visibility 

graphs, Voronoi diagrams and polygonal triangulation. However, visibility graphs 
does not compute predefined paths, so it would be used at first to see if the destination 
point is visible from the initial point. If it is the case, as it will be most of the time, 
because, we have segmented the space in more o less convex shapes, we simply 
follow the line of sight between the given points. If is not the case, we search for the 
closer point of a preplanned path and we compute the trajectory to the closer point to 
the closer point, same on the preplanned path to the destination. 

Many tests were made both on simulation areas and on real data. On Fig. 8 and 9 it 
is show the results for a medium and a large room with Voronoi diagram and 
polygonal triangulation methods. 
 

 Voronoi Triangulation 
 PATH   

 
init. 
point  d No. Distance Complexity No.  Distance Complexity 

 
(X1, 
Y1) 

(X2, 
Y2) Segments    Segments    

  
1.000 
0.345 

3.345 
4.234 26 5.754220 3.308904 67 73.168022 397.410240 

No. 
5.012 
0.301 

1.000  
0.123 24 5.777176 4.787619 5 4.357837 21.746753 

C1 C2 

MR1 

MR2 
MR3 

MR4 

LR1 

LR2 
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Points 
3.589 
2.567 

3.431 
0.354 10 5.819358 7.401335 24 34.665726 268.134192 

 
2.999 
0.568 

0.591 
4.678 20 6.152320 3.630795 69 64.630630 279.185399 

110 
0.391 
0.101 

5.431 
2.898 33 7.171617 3.490847 50 63.853653 258.275277 

Table 1. Evaluation of paths for a medium room. 
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Fig. 7. Planned paths for a medium room: Left side Voronoi diagrams and right side polygonal 
triangulation.  

 
 
 
 
 
 

 Voronoi Triangulation 
 PATH   

 
init. 
point  d No. Distance Complexity No.  Distance Complexity 

 
(X1, 
Y1) 

(X2, 
Y2) Segments    Segments    

  
1.254 
3.258 

9.450 
0.155 22 

11.13014
7 4.798896 24 

47.1181
11 

69.3826
76 

No. 
11.769 

3.404 
0.232 
1.678 26 

13.56966
0 7.734908 6 

14.8218
94 

9.15178
8 

Points 
4.211 
4.002 

8.999 
2.798 12 8.184609 5.843422 11 

21.9396
53 

83.4062
17 

 
12.589 

4.880 
0.557 
1.101 31 

13.92733
2 4.261053 31 

66.6289
22 

90.9081
47 

145 
9.450 
0.288 

10.829 
0.742 13 0.000000 0.000000 10 

6.93885
3 

19.0797
23 

Table 2. Evaluation of paths for a large room. 
 
 

In order to evaluate the planned path for each method, we have proposed to 
compare them with the following characteristics: No of segments, total distance, and 
complexity of the path. 

Complexity of the path is obtained by getting the surface of convex hull of the 
computed path, divided by the square of total distance. In tables, 1 and 2 are shown 
some results. 

5 Conclusions and Future Work 

In this work, we have proposed a method for construction of topological metric 
maps for mobile robots on indoor environments, which are closer to the human 
conception of spaces in uses and characteristics. A discrete curve evolution method 
has been used in order to simplify date acquired from the laser range finder, and to 
obtain structured features in the environment. We have proposed initially to consider 
three types of areas, large and mediums rooms, and corridors. With this classification, 
a topologic map is created which is solved in a simple way with a first in depth 
search. For each node in the graph the path planning in the metrical local map is 
solved by: 1) if the initial and destination points are visible we use the line of sigth, if 
not 2) we use the visibility graphs to get the closer point to a predefined path, 
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computed with an specific method for each type of area. We have studied only 
predefined paths created with Voronoi diagrams and Polygonal triangulation. 
Polygonal triangulation have been show better results on simulation, however on real 
data is not very useful. The main problem with this method is that there is not a 
unique way to triangulate a polygon.  
We propose as future work to evaluate more path planning methods as well to 
characterize more spaces. Information about the conditions of use of each area will be 
also incorporated. 
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