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Abstract 

The paper deals with recognition of artificial landmarks using fish-eye lens. The 
proposed recognition model is based on algebraic affine moment invariants (AMIs). 
Landmarks are used for the navigation of an autonomous robot, equipped with a fish-
eye lens camera. The recognition ability of the AMIs regarding the deformation 
introduced by the fish-eye lens image acquisition is investigated. The results of the 
experiments in real situations, which proved the discriminability and the stability of the 
recognition model, are shown. 

 
 
Keywords: Landmark recognition; Affine moment invariants; Fish-eye lens;   
Robot navigation. 

1. Introduction  

The use of robots has an increasing tendency nowadays. Some tasks require 
mobile robots to act autonomously, without human help. They must have 
correct notion about their position and what should be their next action. 
Moravec's Cart represents one of the first solutions of the robot navigation 
(Moravec, 1981). 

The information about the robot trajectory and the previous representation of 
the robot's world can be used for the estimation of the current robot position. 
The robot can construct its own world map based on the data acquired by its 
sensors (Leonard, Durrant-Whyte and Cox, 1990; Brooks, 1986; Shah and 
Aggrawal, 1995a). After an incorporation of the robot motion trajectory and the 



sensor data into the evolving world representation, the robot is able to make a 
decision about its current position and the next action to take.  This approach is 
efficient in situations when the robot working space is complicated or is not 
static. 

The map of the robot world can be assumed as known a priori in some tasks 
(Cox and Wilfong, 1990). Representation of the robot's working space is stored 
in its memory. Hereupon, the robot makes the decision about its current 
position and next action by matching the new collected sensor data with the 
stored reference world representation (Kosaka and Kak, 1992; Dulimarta and 
Jain, 1997).  

Landmarks represent one possible solution of the robot position estimation. 
Objects in the scene, which are found distinctive by the robot are called 
landmarks. In this approach no representation of the surrounding world is 
necessary, so complex and often memory demanding descriptions can be 
avoided. Landmarks can be used to impart certain type of information to the 
robot (Lewitt, Lawton, Cheldberg and Nelson, 1987). For example, recovery 
from failure during robot navigation can be based on finding landmarks 
(Kosaka and Kak, 1992). The landmarks can be either part of the world (Yeh 
and Kriegman, 1995) or artificial signs placed into the robot's environment 
(Kortenkamp et al., 1993).  They are detected by visual sensors and then 
compared against the database of landmarks.   

A robust recognition system for landmark classification is essential. The 
appropriate recognition model is chosen according to the type of degradation, 
which is going to be present in acquired images. For example, the robot 
equipped with the common type of camera introduces to the landmark 
acquisition process the projective deformation and additive noise. The 
recognition model based  on affine moment invariants AMIs  was proven to be 
robust under such type of deformation (Zitova and Flusser, 1999). 

In this paper, we present a system for autonomous robot navigation. The 
robot is equipped with  fish-eye lens camera, which provides more information 
than the conventional type of lenses. Especially, the robot navigation in indoor 
environments can be improved using the fish-eye lenses because of their wide 
field of view (approximately 180º in the diagonal direction) and the ability to 
obtain information even from very close robot surrounding (Shah and 
Aggrawal, 1995b). We propose to apply a recognition model based on affine 
moment invariants (AMIs) (Flusser and Suk, 1993; Flusser and Suk 1994). To 
prove the applicability of this idea we investigated the stability and robustness 
of AMIs on the images acquired by a fish-eye lens camera. 

 
Several aspects of the autonomous mobile robot navigation, use of 

navigation marks and fish-eye lens camera use are mentioned in Section 2. The 
recognition model based on affine moment invariants (AMIs) is introduced in 
Section 3.  Section 4 deals with experiments we made to test the recognition 
ability and robustness of the proposed model.  Section 5 concludes the 
described propositions and experiments. 
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2.  Aspects of the mobile robot navigation  

As mentioned above, one approach to navigate a mobile robot is to use 
landmarks.  They can be  part of the environment, for example sets of vertical 
edges of objects located in the robot's surrounding. However, it is often much 
easier to use artificial marks placed in the environment. They are considered as 
a priori knowledge of the world. 

Information which should be imparted to the robot in a particular situation 
(about robot's position, crossing, obstacle, special task), is bound with certain 
shape of the mark.  Distinctively shaped marks then should be situated in the 
area of the possible occurrence of corresponding situations.  If artificial marks 
are used, there are no more limitations, produced by the natural layout of 
objects.  Use of natural marks can be inconvenient due to the possible 
complexity of mark description and their detection in some tasks.  Artificial 
marks can be used in many situations without problems and we can even 
assume that they are not occluded with an obstacle (we can choose their 
positions). We confined ourselves to the model of robot navigation problem 
solution with artificial non-occluded marks in this article. 

To obtain good results using the landmark approach, marks should fulfill 
several conditions.  They should be distinctive, meaning that they should be 
discriminable, and finding them should not be too difficult.  

The way of using imparted information is an important aspect of artificial 
landmarks.  Marks can be used directly for robot self-localization in the world 
map, where the position of each landmark is recorded.  On the other hand, the 
information can be encoded directly into the shape, for example the numbers of 
vertical and horizontal lines on the mark can determine the x and y coordinates 
of the robot position, respectively.  It is necessary to design mark shapes 
correctly for a certain task, when using this approach.  Their shapes have to 
offer enough free parameters for encoding desired data (if  x and  y  coordinates 
of a position has to be encoded, the mark shapes should be able to vary in two 
parameters ). 

It is often more suitable to use information, encoded in mark shapes, as a 
key for the look-up tables.  Then we can change data in the look-up tables in 
case robot's task is changed. Our mark set consists of four shapes which have 
different properties of curvature, number of sides, holes, etc., which makes 
them easy to differentiate visually (see Fig. 1). We could have more shapes in 
the mark set to provide information to the robot, or instead, we could change 
their aspect ratio (Zitova and Flusser, 1999), or encode data in the shape itself 
through the use of bar codes (Becker et al., 1995; López et al., 1999). 
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Figure 1. The database of used landmarks shapes [MOON, STAR, ARROW, KEY]. 

3. Recognition model - Affine moment invariants (AMIs)  

The recognition model based on invariants was chosen for marks 
recognition.  Invariants describe features of an object, which stay unchanged 
even in situations, when an object is distorted. The invariants should be chosen 
according to the type of deformation which is introduced during the image 
acquisition process. Several kinds of features have been used for object 
description in recent works, such as shape vectors (Peli, 1981), shape matrices 
(Goshtasby, 1985), Fourier descriptors (Zahn and Roskies, 1972), differential 
invariants (Weiss, 1988) and moment invariants (Hu, 1962; Belkasim, Shridhar 
and Ahmadi, 1991; Prokop and Reeves, 1992).  Most of them can describe 
binary objects only and, moreover, are invariant only under translation, rotation 
and scaling of the object. Recently, Flusser and Suk (Flusser and Suk, 1993) 
have derived  affine moment invariants (AMIs), which are invariant under 
general affine transformations 
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((x,y) and (u,v) are the coordinates in the image plane before and after the 

transformation, respectively). Invariance of the AMIs has been proven 
theoretically and experimentally in recent papers (see (Flusser and Suk, 1993; 
Flusser and Suk, 1994)). They are robust enough in the case of additive zero-
mean random noise. The AMIs are able to correctly recognize objects 
underlying weak perspective projection 
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(2)           
A perspective transformation exactly describes the projection of a 3-D 

object of a general position into the 2-D image plane when captured by a 
pinhole camera. When the distance between the camera and the object is 

 4



significantly  larger than the size of the object, the  projective transform can be 
well approximated by the  affine transform and the AMIs can provide a correct 
classification of the objects. Descriptions of experiments proving this can be 
fo

with the 
lan odel are described. 

The first six AMIs follow in explicit form: 

und in (Zitova and Fluser, 1999). 
In our case, the deformation is not just perspective one but includes another 

type of deformation, introduced by the fish-eye lens (see Fig. 3, 4). Under 
specific conditions (the size of an object, the distance between the object and 
the camera) the AMIs are robust under the perspective transform. We assume 
that under similar conditions the AMIs recognition model can be stable under 
the fish-eye lens deformation too. This robustness of AMIs is tested 
experimentally  in Section 4, where the experiments we made 

dmark database and the proposed recognition m
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pq  is the central moment of order (p+q).  For a 2-D object A it is 

de ned as 

                                    (3) 

ithin A.  Full derivation of the AMIs 
can be found in (Flusser and Suk, 1993). 

where µ
fi
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where (xt, yt) are the coordinates of the center of gravity of object A and 

f(x,y) describes an intensity distribution w
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Some general remarks about AMIs should be made here.  It can be said that 
moments of higher orders describe more subtle variations in shape and are 
more sensitive to noise corruption.  The second important thing about them is 
that AMIs  I2, I3 and I4 (mentioned above) have theoretically zero-values in the 
case of radially symmetric objects.  This is caused by the fact that the value of 
µpq is zero, when p or q are odd.  During experiments, described in Section 4, 
the AMIs I2, I3 and I4 appeared to be less robust to the fish-eye lens 
deformation, present in our experiments. They were omitted from the 
recognition model for this reason. 

Generally, the moments and the AMIs are defined for gray-level images 
with a finite support without any other restrictions. In our case, however, the 
images of the landmarks are binarized before calculating the invariants in order 
to eliminate different lighting conditions. Thus, f(x,y) in  definition (3) 
represents the characteristic function of the landmark picture. 

We propose a recognition model, which for a given image of a landmark, 
acquired by the robot sensors, computes the AMIs I1, I5 and I6, and by the 
minimum distance algorithm finds the closest mark from the database. The 
ability of  this recognition model to make correct decisions for the fish-eye lens 
acquired images of landmarks is investigated experimentally in Section 4. 

4. Experiments  

The discriminability of the AMIs was tested on images acquired by the fish-
eye lens camera with lens focal length 3.8mm and specification F 1.8 for the 
iris. We use four different shapes of landmarks (see Fig. 1). Images were taken 
from a 90 cm distance and landmarks were situated as it is shown on Fig. 2. 
For every shape we acquired 10 images of the landmark at specified positions 
(Fig. 3 and 4). On the images the deformation caused by the fish-eye lens is 
visible. For better appreciation we took an image of the floor with regular grid 
pattern. The image was taken form the same camera distance. The introduced 
deformation is very well visible on the image (Fig. 5). 

 

 
Figure 2. Landmark positions for experiments and position indexing. 

 
The landmarks were segmented from acquired images using a boundary 

following technique (detected boundaries are shown in Fig. 3 and 4) and a 
thresholding segmentation. Both approaches are implemented in a semi-
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automatic way. We are going to make the segmentation fully automatic for the 
mobile robot navigation project for the future. We just work with the binary 
images of detected landmarks after the landmark segmentation was done. 

AMIs were computed from the segmented landmarks for all 10 positions for 
each type of landmark shape and for all types of segmentation techniques. The 
AMIs I2, I3 and I4 (mentioned above) appeared to be very sensitive to the 
present type of deformation, but the AMIs I1, I5 and I6 confirmed our 
expectation that AMIs are robust even under the projective and fish-eye lens 
transformation when the landmarks are not too far away from the camera (in 
our case of the mobile robot navigation, just the near surrounding information 
will be used for the planning of the robot movement). The values of AMIs I1, I5 
and I6 for all images are shown in Tab. 1. The AMIs I1, I5 and I6 were chosen to 
form the feature vector for the landmark classification. 
 
 MOON STAR ARROW KEY 
 I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3

1 1430 2333 1170 1173 1174 765 776 437 145 1283 1356 854 
2 1499 2594 1341 1165 1152 751 785 452 155 1276 1347 830 
3 1467 2479 1259 1165 1161 734 770 424 139 1282 1335 844 
4 1445 2408 1208 1165 1161 734 781 439 147 1285 1376 846 
5 1508 2635 1376 1162 1152 724 780 437 145 1292 1528 1024 
6 1430 2243 1130 1170 1174 760 778 438 143 1290 1344 892 
7 1412 2162 1052 1165 1153 723 778 442 141 1290 1344 892 
8 1426 2230 1087 1169 1160 731 783 452 141 1280 1342 870 
9 1394 2072 984 1214 1210 784 784 447 136 1285 1365 932 
10 1432 2199 1077 1204 1169 761 779 430 133 1292 1528 1024 

Table 1.  1:Values of AMIs I1, I5 and I6 computed from segmented images (10 different 
images taken at specified positions for every type of landmark shape [MOON, STAR, 
ARROW, KEY]). 

The stability of the AMIs I1, I5 and I6 can be seen in Fig. 6, where the 
relative variations RV of AMIs are plotted RV(image) = abs(AMI(image) - 
AMI(reference)) / (AMI(reference) / 100)). The reference image is the position 
No. 2  from every set [MOON, STAR, ARROW, KEY]. The error is very small 
according to the level of degradation (see Fig. 3, 4).  

The influence of the chosen technique for segmentation was investigated. 
The maximum relative variation RV of AMIs can vary with the type of  
segmentation. It is important to pay attention to the segmentation of landmarks. 
In the case of the segmentation techniques used the classification rate was 
good, as can be seen in the next part of this section. In Fig. 7 the feature space 
I1, I5 and I6 is plotted together with the feature vectors, corresponding to the 
segmented landmarks. The MOON and ARROW clusters are well separated in 
the feature space, on the other hand the KEY and STAR clusters are close to 
each other in the feature space. A misclassification can appear in the case of 
wrong segmentation. The Fig. 8 shows distances of all acquired landmarks 
from the representatives [MOON, STAR, ARROW, KEY] in the feature space 
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(I1, I5, I6). The distance to the corresponding representatives is  much smaller 
than to other representatives in most cases. 

 
 

Figure 3. The first five landmark images from every set [MOON, STAR, ARROW,   
            KEY];  the detected landmark boundaries are shown. 

 
 The ability of AMIs to make a correct classification of landmark images 

was tested. The minimum distance between the acquired landmark and the 
corresponding reference one from the database (MOON, STAR, KEY, 
ARROW) was computed in the feature space (I1, I5, I6). Results of this 
experiment are shown in Tab. 2. The images were classified using data 
obtained from images segmented by simple thresholding, boundary following 
and manual thresholding. In the first case, 38 images out of 40 (95%) were 
correctly classified, in the second 35 out of 40 (87.5%) and in the last case all 
images (100%) were correctly classified.  It can be seen that the landmarks are 
classified correctly even when the introduced degradation is perceptible. The 
proposed recognition model (AMIs) showed sufficient stability and robustness 
under the perspective transform together with the fish-eye lens deformation. 

5.  Conclusions  

In this paper, a method for the recognition of landmarks acquired by a fish-
eye lens camera was introduced. This model is based on affine moment 
invariants.   
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Figure 4. The last five landmark images from every set [MOON, STAR, ARROW, 

KEY]; the detected landmark boundaries are shown. 
 
 

 
Figure 5. The deformation of a regular grid pattern, introduced by the fish-eye lens. 
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Image  1 2 3 4 5 6 7 8 9 10 
MOON  1 1 1 1 1 1 1 1 1 1 
STAR  2 2 2 2 2 2 2 4 4 2 
ARROW  3 3 3 3 3 3 3 3 3 3 
KEY  4 4 4 4 4 4 4 4 4 4 
Image  1 2 3 4 5 6 7 8 9 10 
MOON  1 1 1 1 1 1 1 1 1 1 
STAR  2 2 2 2 2 2 2 2 2 4 
ARROW  3 3 3 3 3 3 3 3 3 3 
KEY  4 4 4 4 2 4 2 4 1 1 
Image  1 2 3 4 5 6 7 8 9 10 
MOON  1 1 1 1 1 1 1 1 1 1 
STAR  2 2 2 2 2 2 2 2 2 2 
ARROW  3 3 3 3 3 3 3 3 3 3 
KEY  4 4 4 4 4 4 4 4 4 4 

 
Table 2: The results of image classification. Every table row shows results of the 
classification of ten images at the specified positions. The value 1 stands for MOON, 2 
for STAR, 3 for ARROW and 4 for KEY shapes, respectively. Three feature vector sets 
were used, computed from differently segmented images. The first group was 
segmented using a simple thresholding technique, in the second case a boundary 
following technique was applied and finally a manual thresholding was realized. The 
three table sections correspond to the three used thresholding techniques.  

 
The performance of the proposed method was demonstrated by experiments 

with acquired images of landmarks. Although the AMIs are invariant 
theoretically just under the affine transform and we worked with images 
transformed by the projective transform and degraded by the fish-eye lens 
camera acquisition, AMIs recognition ability is high enough even in that case. 
The presented experiments proved the possibility of using the AMIs for the 
recognition of landmarks for the navigation of the mobile robot, equipped with 
a fish-eye lens camera 
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Figure 7. The feature space (I1, I5, I6) with plotted feature vectors, corresponding to 

the segmented landmarks. Every cluster is labeled with the reference shape type. 
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