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 Abstract – This paper deals with indoor navigation based on 
visual landmarks. The robot is equipped only with a PTZ camera 
(pan, tilt and zoom control), used in a learning step, to detect and 
learn landmarks such as posters, signs or other characteristic 
objects in the environment. To reach a goal the robot generates a 
path, so it could always locate itself with respect to one or two 
landmarks. For this work we propose a strategy for optimally 
control of the PTZ camera, thus saccadic motions are minimized 
during the transition steps between the trajectory stages 
controlled by different landmarks. Depending on the position of 
learnt landmarks a perception planner selects along the path, the 
better landmarks to be tracked and to be used to control the 
robot motion. During the execution of this plan, some unforeseen 
events (occlusions, tracker disruptions, obstacle avoidance) make 
mandatory to modify either the perception plan or the generation 
of a new plan. Several tracking modalities can be selected 
according to the landmark characteristics, also to the current 
illumination conditions. The strategy we are proposing is initially 
validated, using a simulation environment, then, on a robot 
equipped with a Sony PTZ camera. 
 
Keywords: indoor navigation, landmark tracking, active vision, 
perception planning, execution control. 
 
 

I. INTRODUCTION 

Navigation is a classical topic in mobile robotics. It is 
sometimes considered that this problem is now solved, and 
many research teams are now interested on other challenges 
like cognitive robotics, multi-robot coordination or human 
robot interaction. Despite many improvements had been 
proposed in the past ten years, yet a robot equipped with 
cheap sensors, cannot execute safely complex motions on long 
distances in cluttered environments. In this study only indoor 
navigation is considered; thus, for a mobile robot only 
equipped with an active or PTZ camera, the pan, tilt, focus, 
aperture and zoom configuration can be controlled to adapt 
the view conditions to the current scene. On the other hand, 
our robot is also equipped with ultrasonic sensors used for 
obstacle detection and avoidance functions which are not 
within the scope of this paper. As a consequence we focus on 
different strategies to optimally control the PTZ camera when 
the robot executes a trajectory towards a goal. 

In writing, several navigation modes have been proposed, 
especially metrical and topological ones. Here, only the 
metrical navigation approach is considered. The trajectory is a 
curve on the ground. A path planner requires a free space 
representation (typically an occupancy grid) to generate a 
trajectory curve on the ground. Then, the robot requires a 
landmark map (typically, a stochastic map) to locate itself 
when it executes the motion along this curve. When 
unforeseen obstacles are detected the robot can locally deform 
the curve as an elastic band. 

In this paper landmarks are discriminatory objects that the 
robot has previously detected, characterized by an appearance-
based representation and located in a world-reference frame. 
This learning process has been presented in [1], and during 
motion, landmarks must be detected and tracked along the 
trajectory. The tracker must switch from a landmark to 
another depending on the camera field of view and the robot 
position with according to landmarks. The navigation task 
using a passive camera, mounted on the robot has been 
described in [2] for the metrical mode also in [3] for the 
topological mode, and different tracking modalities have been 
proposed in [4]. This paper is focused on the selection of the 
best strategy to make more robust the navigation task using 
the PTZ camera with respect to the landmark positions and the 
trajectory. 

In order to carry on our experiments two steps must be 
considered: planning and execution control. For the former, 
the robot analyses the available knowledge to decide at every 
point of the nominal trajectory what the optimal camera 
configuration is. In [5], this perception planning function has 
been presented: some simulations were shown to validate the 
selected strategy. Section 3 summarizes our contribution and 
proposes some improvements. The section 4 is concerned with 
the execution of the perception-plan when the robot moves 
along the path considering different events that make 
mandatory an adaptation of the original plan or the generation 
‘on the fly’ of a new one. Then, section 5, presents 
experimental results. Finally, in section 6 we offer a 
discussion related to our approach and a comparison of to the 
state of the art. Below, the overview of this navigation 
approach based only on monocular vision and on landmarks is 
explained. 
 



II. OVERVIEW ON OUR NAVIGATION APPROACH 

In relation to visual navigation many works are devoted to 
visual servoing with a trajectory defined as a path in an image 
data base [6] or as a sequence of vision-based motions [7]. 
Here, our trajectory is defined as a geometrical curve in the 
task space (a 2D curve on the ground plane). This so-called 
metrical approach requires several environmental 
representations that must incrementally be built during an a 
priori learning stage. The robot executes a SLAM function [8] 
to learn the visual-landmark positions with respect to a world-
reference frame, and builds a global occupancy grid using a 
range sensor to learn the free space model. This representation 
is shown in Fig.1 
 

 
 

Fig.1. A part of our environment model: free space is white; red spots are 
detected posters; grey rectangles are detected doors (not used here). 

 
When the robot has to move in the environment towards a 

given goal, a two-steps planning function is executed to 
generate a landmark-based trajectory. First a path planner 
selects a trajectory as a curve in the free space, from the 
current robot position to the current goal. Then a perception 
planner selects at every point of this curve, at most, two 
landmarks to be tracked by the PTZ camera and to be used for 
the robot localization. Next, the robot path is split in 
successive trajectory pieces defined by one or two landmarks. 
It could be considered as a trajectory in the PTZ camera 
configuration space. 
 

The execution control of a landmark-based trajectory, must 
tackle several problems:  
• Unforeseen obstacles on the trajectory: in our context, a 

person sharing the task space with the robot, or an object 
(such as a chair…) that has been moved after the learning 
step. The elastic band concept is used to deform the initial 
path; the tracking plan must be adapted or generated 
again. 

• The initialization of successive landmark trackings: on 
every trajectory piece, the robot must track one or two 

landmarks. When approaching the end of the current 
piece of the plan; a switching function is activated to 
search the next landmarks to be tracked and to select the 
best tracker modalities with respect to current 
illumination conditions. 

• The tracker control that is required to recover from any 
tracking disruption. For example, tracking can be 
disrupted for many reasons: in our context of a mobile 
camera used to track static landmarks, the most commeon 
are occlusions (another object hides the landmark from 
the current camera position); distraction (another object 
very similar from the one to be tracked, produces some 
ambiguities); and large target image motions due to large 
camera motions (mainly, during robot rotations). 

• The execution on-line of a landmark-based localization 
function to measure the error between the current robot 
position and the estimated on the trajectory. The control 
law minimizes this error. 

 
In previous work we have presented, several tracking 

modalities [4, 9]. Here the robot uses only for localization 
planar quadrangles (mainly posters, Fig.2), so only the 
template tracker is executed. In our work, the prediction step 
of the tracker can be simplified: the target image motion is 
predicted from the estimated camera motion given by the 
odometry and the gyro from robot motion (X, Y, and heading), 
also by encoders from the optical axis and the focal length. 
 

 
 

Fig.2. A poster and its invariant representation used for both tracking and 
localization. 

 
In the two following sections, the perception planner and 

the execution controller for a trajectory are presented. 
 

III. PERCEPTION PLANNING 

 

A. Landmark Visibility 
 

To estimate the current robot position, we use quadrangular-
planar landmarks. A quadrangular planar landmark L can be 
represented by its four corners pj with j ∈ [1, 4]. Contrary to 
the bi-valued visibility function commonly used, the visibility 
is defined as a continuous real valued function. 



Be x, the observer position in 3D space, then the visibility Vj 
for each corner pj of the landmark is defined by: 
 

)cos( jjV φ=  (1) 
where φ is the angle between vectors d = x - p and N is the 
normal vector to the planar surface (Fig 3).  

 

 
 

Fig. 3.Vectors and position taken into account for the visibility of a planar 
landmark. 

 
 Be Li = {pi1, pi2, pi3, pi4}, the set of corners of a 
quadrangular landmark i with normal vector NLi. The visibility 
VLi of the landmark Li is quantified as: 
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where Vij is the visibility of the j-th corner of the landmark i, 
and np is the number of points considered, here np = 4.  

If visibility value VLi  = 0, it means that the line of sight is 
parallel to the planar surface. Negative visibility values means 
a rear viewpoint. 

With this definition, visibility depends only on the angle 
between the orientation (normal vector) and the observer 
position, whatever the distance is to the target point. It means 
mainly that, proper visual characteristics of the observer (e.g. 
the visual sharpness) are not considered by this criterion. 
Therefore, depending on camera parameters, a point can be 
visible but not perceptible. Proper visual characteristics will 
be later incorporated in utility measurements. 

 It is important to note that, for a planar landmark, 
criterion (2) gives its optimal value (VLi = 1.0), at the frontal 
position to the normal vector and at the infinite distance from 
the landmark. However, as it could be proved, in a frontal 
view when the distance from observer to target is greater than 
the target dimensions in one order of magnitude, visibility 
values are greater than 0.995, which are very acceptable 
values. 
 
B. Landmark Utility 

The utility function of a given landmark Li is the product of 
various terms K. Each one of these K terms is joined to some 
criterion that depends on some characteristics: viewer 
orientation, visual sharpness, landmark size and/or specific 

criteria for the given task. The K terms are normalized 
between 0 (null utility) and 1 (optimal utility).  

Two terms are always used: the first one to assess the size of 
the landmark on the viewer’s image, and the other one to 
compare the alignment between the optical ray camera-
landmark and the optical axis (camera orientation). Fig. 4 
shows the camera model and variables used for utility 
computation. 

 

 
(a) (b) 

Fig. 4. Camera model: a) internal angles, α = pan angle, β = tilt angle and γ = 
view field (zoom), b) external angles ϕ angle between f and d, ψ angle 

between v and f. 
 

The size of the landmark projected on the image depends on 
the dimensions of the landmark, and then directly on the 
possible configurations of the field of view, know as the zoom 
(parameter γ). The field of view angle is measured on the 
horizontal line of the camera-reference frame. Vertical angle 
is typically ¾ of γ angle. 
 The first criterion K1 is defined by: 
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where | | represents the absolute value, γ is the field of view of 
the camera (Fig. 2a) and γi* is the optimal field of view at the 
current distance for the landmark i. Optimal field of view 
depends on the visual task, here the landmark localization and 
tracking. It must be defined from a statistical analysis of many 
experiments: typically, γi* will be selected so that the 
landmark projection must be large enough to improve the 
localization accuracy, but cannot be too large to make more 
efficient the tracking. This term could be modified to give a 
penalty for extreme positions of the zoom. Thus, the system 
will prefer the close landmark with a mean zoom than the 
further one with the minimal field of view. 

It is important to notice that, although the line of sight 
observer-landmark exists (where visibility is not zero), the 
landmark could be out of the image [i.e. the optical axis points 
to another direction (Fig 2b)]. Our second utility term 
considers the angle between these two vectors, and then is 
defined as: 

i
LiK ϕcos2 =  (3) 

where ϕ is the angle formed between the optical axis f and the 
line of sight vector for the i-th landmark dLi. The utility is 
maximal when the two vectors are aligned (no specularity). 

The utility function is a product of the different K terms. 
Considering a navigation task, a third utility term, presented in 
[5], promotes configurations where the optical axis and the 
next robot orientation are aligned, so that the camera 



anticipates a robot rotation. Finally, the utility for a landmark 
Li at position xt on the path will be expressed by: 
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where m is the number of utility terms, in our case m = 3. A 
better visibility of Li from configuration xt, improves the 
utility of this couple (Li, xt). 

If two or more landmarks are visible from a given position 
xt, then the utility for this set of landmarks is the sum of utility 
functions for each one of them: 
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where Ui is the individual utility of the landmark Li. 
 
C. Visual Planning 
 

To find the best camera modality configuration along the 
trajectory, the path is sampled in uniform pieces, limited by 
points (x0…xt…xN). All the subsets of visible landmarks are 
generated at a given point of view xt, and then the utility for 
each subset is computed. In order to reduce complexity of the 
planner and to be realistic with respect to the real time 
constraints, the maximal number of elements per subset is 
limited. Here it is considered that simultaneously the robot 
tracks only two visible landmarks. 

 
After some mathematical manipulation, the optimal Camera-

Landmark alignment for the pan and tilt angles, in the general 
case, is obtained by: 
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where nv is the number of landmarks at the current subset, Ci 
= KLi

1VLi, and αi and βi are the pan and tilt angles of di. 
Once the utility-computation is made, for all subsets of each 

sampled point along the path, is possible to find the set of 
camera-modalities for the entire path that maximizes utility. 
However, the modality plan does not assure a smooth 
transition between modalities. 

 
In order to avoid erratic motions of the camera and its zoom 

(saccadic movements) that could perturb tracking landmarks 
and its detection. The modality plan is improved by a dynamic 
programming algorithm. For each point xt, all the possible sets 
of the visible landmarks are determined (one or two). A graph 
is created where such a set is a node; edges are created 
between all the sets created for xt and xt+1, and labeled with a 
cost which is proportional to the distance between the two 
related configurations of the PTZ camera. The optimal 

perception plan will minimize the global cost of the path in 
this graph, i.e. will minimize the camera motions (Fig 5). 
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Fig. 5. Generation of the perceptual plan by a dynamic programming 
algorithm, dark arrows represent the optimal path. 

 
The complete strategy is summarized as follow: 
 
Generation of the planned path 
Path sampling (x ={x1,…,xt,…}) 
For each xt  
  Calculate the subsets C of visible landmarks 
  For each subset 
     Calculate the total utility Uc  
     If t > 0 then  
       Compute the cost to go from all subsets       

        at t-1 to the current subset 
Apply dynamic programming to get the optimal visual 
path.  
 

IV. EXECUTION CONTROL OF THE PERCEPTION PLAN 

Many authors have proposed reactive strategies in order to 
optimize the utility of an active camera. Take for instance the 
work of Toyoma [11, 12, 13] and Rasmussen [14], which 
propose several probabilistic models to select the best target to 
be tracked and the best tracker modalities. Our approach is 
different because is a combination between the planning step 
and the execution control, hence the on-line selection is 
limited up to the recover-point where is possible to cope with 
unforeseen conditions. 

Once the optimal perception plan has been generated, a 
post-processing is applied to the group of successive points xt 
associated to the same set of landmarks. Finally, the camera 
trajectory is expressed as a sequence of switching positions 
between trajectory pieces:  

S = (s0…st ….sP), with P < N. 
On each piece (st, st+1), one or two landmarks (Lt1, Lt2) have 

been selected to be tracked (Lt2 could be NULL). 
Next the architecture of the path controller is described. 

Then, the fuzzy controller for the PTZ camera is presented, 
and finally landmark switching and error recovery. 
 

A. The path controller.  
The execution control is implemented by six modules 

presented on figure 6.  



 
 Fig. 6. Modular architecture for the execution control of a perception 

plan. 

The Path Controller module is an asynchronous module that 
initially receives the perception plan. It activates the 
Landmark Tracker, and the Position Manager modules, and in 
turns it sends requests to the Landmark Detection module. 
Then, the path controller waits for events or replies generated 
by all these modules.  

The Landmark Tracker module is running a main loop at 
5Hz (even when the template tracker, used to track a poster, 
can be executed at 15Hz). This tracker receives the labels (Lt1, 
Lt2) of the landmarks that has to track. Initially, it adapts the 
tracker modality with respect to the current illumination 
conditions. At each period, an image is acquired and the 
Tracking function is executed: 
• If at least one landmark is found, it is exploited by two 

functions. (1) The Locate function computes the current 
robot position from one or two tracked landmarks. This 
position is written in a shared-memory read by the 
Position Manager module. (2) The Center function 
computes new orders for the PTZ camera, so the 
landmarks are centered in the image and seen with 
optimal resolution. Orders are written in the shared-
memory read by the PTZ Camera Controller module. 

• If tracking fails, then the Landmark tracker sends a reply 
to the path controller and then it stops. 

 
The Position Manager module is periodic (25Hz, like the 

Robot Controller module). After its launching, it receives the 
nominal trajectory to be executed. At each period, the Position 
Manager estimates the robot position from data provided by 
the odometry and landmark-based localization. Then, it 
generates orders for the Robot controller module with respect 
to the error and the nominal trajectory. The Position Manager 
reads in a shared-memory a position smax that has to be 
monitored; if the robot position (expressed as a curvilinear 
abscissa on the path) overpasses smax then an event is sent to 
the Path Controller module. 

The Landmark Detection module is an asynchronous 
process. When approaching st+1 , the path controller sends a 

request in order to search the next landmarks to be tracked 
(Lt+1,1, Lt+1,2), while the tracker still continues on (Lt1, Lt2). 
The Landmark Detector module generates orders to the PTZ 
camera to enlarge the current field of view until the new 
landmarks are visible. 

The PTZ Camera Controller is a periodic module. It reads 
orders from Landmark Tracker and Detection modules. This 
controller selects executive orders for the pan, tilt and zoom 
configurations. Normally, the path planner selects a landmark 
sequence where conflicts are avoided: fields of view required 
by the two modules, must overlap. 

 
B. A fuzzy controller for the PTZ Camera.  

The fuzzy controller is divided in two main parts: One for 
the control of the zoom or field of view angle, and the second 
to control pan and tilt angles (fig. 7) 

 
 

Visual field
of view control

Pan and tilt
control

Rulebase

Rulebase

defuzzyfication

defuzzyfication

fuzzyfication

fuzzyfication

Input Output

Fuzzy controller

 
Fig.7. Fuzzy controller 

 
 

In order to detect and track objects in current images, a 
proper image-size is required. The first part of the controller is 
dedicated to this task. We use as input data the difference (or 
error) between the current and the desired size and the rate of 
change of the diagonal in the bounding-box containing the 
objects within the image (ed,, ėd). The output variable is the 
speed vγ which should be applied to the camera encoders to 
arrive to the desired bounding-box size on the image. These 
input and output variables are quantified in tree states or 
linguistic descriptors (table I). 

 
TABLE I 

QUANTIFICATION OF INPUT AND OUTPUT VARIABLES 
Input Output  ed ėd vγ 

Negative Negative Negative 
Zero Zero Zero Linguistic 

Descriptors 
Positive Positive Positive 

 
The rule base is generated combining all possible values of 

linguistic descriptors for input variables, resulting in a 3x3 
rule matrix giving a possible value for the output variable as is 
shown in table II. 
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TABLE II 
RULE MATRIX 

ed   
Negative Zero Positive 

Negative P Z P 
Zero P Z N ė d

 

Positive N Z N 
 
The output value for the output variable is obtained by RSS 

(Root-Sum-Square). This method guarantee values for the 
output variable all over the continuous output interval. 

The second part takes into account the position of the center 
of the bounding box (x, y), and the rate of change as input 
variables. Linguistic descriptors are divided in five states, 
given as a 5x5 matrix rule, for each one of the speeds given to 
motors that drive the pan and tilt angles. This last part also 
depends on results from the previous zoom part as is show in 
fig. 7. 

 
C.  Landmark switching  

A simplified pseudo-code of the path controller is given 
below. We assume that only one landmark is detected and 
tracked, and then for each trajectory piece (st,st+1) a list of 
landmarks is sorted according to their utilities, has been 
determined by the perception planner, so that the recovery 
procedure for a tracker disruption or a detection failure, 
consists in searching the next landmark in the list. 

 
 

TABLE III 
SIMPLIFIED PSEUDO CODE 

 
t=0 ; n=1; LandmarkDetector.Search (L01) ; 
PosManager.Activate (Trajectory); 
Smax = s1 – δ;  
 
Do  

Wait (event); 
 
If (event == ‘Detector ok’) then 

LandmarkTracker.Activate (Ltn) 
 

Else if (event == ‘Tracker disruption’) || 
(event == ‘Detector failure’)  then 

 n = n+1; LandmarkDetector.Search (Ltn); 
 
Else if (event == ‘Transition’) 
 t = t+1;  

if (t ≠ P) then 
n = 0; Smax = st – δ; 

LandmarkDetector.Search (Ltn); 
 

Until (t == P) 

 
The parameter δ depends on the robot speed and on the field 

of view change required during a transition; it could be 
adapted on-line. Some typical transition configurations are 
shown on figure 8: if many landmarks have been detected in 
the environment, the same landmark is tracked during two 
trajectory pieces, e.g. (L1, L2) tracked, then (L2, L3), then (L3, 
L4)… 
 

  
 

Fig.8. Landmark switching: two configurations with the current tracked 
landmark projected close to the image center, and the next one, partially 

viewed. 

V. EXPERIMENTAL RESULTS 

 

 
Fig.9: Validation of the PTZ Camera Controller module (top view) 

 
First, our navigation approach has been validated using 

simulations, with a generator of synthetic images on a virtual 
world. These results have been presented in [5]. Then, 
experimental results were obtained using a Nomadic robot 
equipped with a Sony EVI-D31 camera. Transitions between 
different trackers were described in [4]. The metrical and 
landmark-based navigation mode have been proven valid by 
different tests. Firstly, a circular trajectory in an open space 
was executed, which always keeps a landmark in the image 
center with the same resolution (Fig.9). Secondly, the robot 
executes a trajectory in a corridor with the detection and 
tracking of sequential landmarks along the corridor walls 
(Fig.10). 
 

  

  
Fig 9: The navigation in the top corridor (Fig.1) using sequential landmarks 

detected along the corridor. 



VI. CONCLUSION  

In this paper, we present a metrical landmark-based 
approach for the planning and control of indoor navigation. 
An environmental model is built during an initial learning 
step: where a landmark-based map and the free space model 
are made. The robot is equipped with a PTZ camera, used for 
detection, characterization, recognition and tracking of 
landmarks. Our study emphasizes the use of a tracking 
function and a camera control that are required when a 
planned path is executed to keep landmarks in the current 
processed image. Detection of sequential landmarks set the 
optimal view conditions whatever the context: obstacles, 
occlusions, illumination problems… 

Further experiments are in progress to validate this 
approach when the robot executes several times a loop. We 
are planning to develop a new model where the world 
reference-frame is avoided and the definition of the whole 
trajectory is determined as connected pieces related to 
particular landmarks sets. Finally, it is important to notice that 
such a definition will require different representations that 
avoids the use of a global stochastic map, and will exploit a 
topological graph together with other planning strategies. 
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